Chapter 2

Chemistry

Objectives

- Describe the purpose of the scientific method.
- **Distinguish** between qualitative and quantitative observations.
- **Describe** the differences between hypotheses, theories, and models.

Scientific Method

- The scientific method is a logical approach to solving problems by observing and collecting data, formulating hypotheses, testing hypotheses, and formulating theories that are supported by data
- *Observing* is the use of the senses to obtain information.
- data may be
 - qualitative _____
 quantitative _____

Demo

- A system is a specific portion of matter in a given region of space that has been selected for study during an experiment or observation.
- Ex.

- Scientists use generalizations about the data to formulate a **hypothesis**, or testable statement.
- Hypotheses are often "_____" statements
- If a plant receives more light, it will then grow faster
 Tosting a humathesis requires
- Testing a hypothesis requires

• _____are the experimental conditions that remain constant.

- A plant that gets 8 hrs of light a day
- _____are any experimental conditions that change.
- Independent –

- Dependent -

- A **model** in science is more than a physical object; it is often an explanation of how phenomena occur and how data or events are related.
 - visual, verbal, or mathematical
 <u>example</u>: atomic model of matter
 - A theory is a broad generalization that explains a body of facts or phenomena.
 - example: atomic theory

Scientific Method - Hawley

• See HO

Objectives

- **Distinguish** between a quantity, a unit, and a measurement standard.
- Name and use SI units for length, mass, time, volume, and density.
- Distinguish between mass and weight.
- Perform density calculations.
- **Transform** a statement of equality into a conversion factor.

Question

• Would you be breaking the speed limit if you were traveling 60 km/h in a 40 mi/h zone?

Measurements represent quantities.

- A quantity is something that has _____
- measurement \neq quantity
 - the teaspoon is a unit of _____
 - volume is a _____
- The choice of unit depends on the quantity being measured.

SI Base Units

Quantity	Quantity symbol	Unit name	Unit abbreviation	Defined standard	
Length	1	meter	m	the length of the path traveled by light in a vacuum during a time interval of 1/299 792 458 of a second	
Mass	m	kilogram	kg	the unit of mass equal to the mass of the international prototype of the kilogram	
Time	ť.	second	•	the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium-133 atom	
Temperature	Т	kelvin	К	the fraction 1/273.16 of the thermodynamic temperature of the triple point of water	
Amount of substance	п	mole	mol	the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon-12	
Electric current	1	ampere	А	the constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2×10 ⁻⁷ newton per meter of length	
Luminous intensity	I,	candela	cd	the luminous intensity, in a given direction, o a source that emits monochromatic radiation of frequency 540×10^{12} hertz and that has a radiant intensity in that direction of 1/683 watt per storadian	

SI units

- ______is a measure of the quantity of matter. – The SI standard unit for mass is the ______.
- Weight is a measure of the ______
 - _____is a measure of distance.

The SI standard for length is the ______.

- .____

Check 4 Understanding

Derived Units

_of SI base units form

derived units

— Ex.

Quick Lab

Dimensional Analysis

- **Dimensional analysis** is a mathematical technique that allows you to use units to solve problems involving measurements.
- Would you be breaking the speed limit if you were going 45 km/h in a 55 mph zone?
- To find the answers, you use conversion factors

K h da BU d c m

- Convert from
 - 12 cm → m
 - 125 m → mm
 - 1.5 km/h \rightarrow m/h
 - $-100 \text{ km/h} \rightarrow \text{mph} (1 \text{ km} = 0.62 \text{ miles})$

2.3

Objectives

- Distinguish between accuracy and precision.
- **Determine** the number of significant figures in measurements.
- **Perform** mathematical operations involving significant figures.
- **Convert** measurements into scientific notation.
- **Distinguish** between inversely and directly proportional relationships.

• Accuracy ______

Precision ______

• **Percentage error** is calculated by subtracting the accepted value from the experimental value, dividing the difference by the accepted value, and then multiplying by 100.

Error

- Some error or uncertainty always exists in any measurement.
 - 1. _____
 - 2. _____
 - 3. _____

 A student measures the mass and volume of a substance and calculates its density as 1.40 g/mL. The correct, or accepted, value of the density is 1.30 g/mL. What is the percentage error of the student's measurement?

Sig Figs

- Significant figures in a measurement consist of all the digits known with certainty plus one final digit, which is somewhat <u>uncertain or is</u> <u>estimated</u>.
- The term significant ______
 mean certain.

Sig Fig Rules (See HO)

- Rules for significant figures
- <u>All nonzero digits</u> in a measurement are significant, but not all zeros are significant.
- Ex. 132, 48525448, 22525252525Zeros BETWEEN nonzero numbers ARE significant
- Zeros BETWEEN nonzero numbers ARE significar
 Ex. 1202, 12.202, 12.022
- Zeros after the decimal and before a nonzero number are NOT significant

 Ex. 0.00025, 0.00000585, 0.0025202
- Zeros after nonzero numbers but before the decimal are NOT significant
- Ex. 125000, 1200, 450200,
- Zeros after nonzero numbers AND after the decimal ARE significant
- Ex. 0.250, 12.020, 456.5020

Practice

- How many sig figs in the following numbers?
- 123456
- 0.00250
- 1252300
- 50584.2302
- 12500.0

+,-,*,/ sig figs

- Adding and subtracting
 - Cannot be more precise that the _____ precise
- Multiplying and dividing
 - Cannot have ______sig figs than the number with the ______sig figs

Practice

- 2.35+458.3+0.255
- 856.30-0.2548-6
- 455.24*3.4
- 896/2