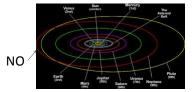
Chapter 4

Arrangement of Electrons in Atoms

The Development of the New Atomic Model

4.1

Objectives

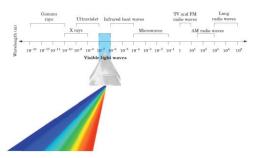

- **Explain** the mathematical relationship among the speed, wavelength, and frequency of electromagnetic radiation.
- Discuss the dual wave-particle nature of light.
- **Discuss** the significance of the photoelectric effect and the line-emission spectrum of hydrogen to the development of the atomic model.
- Describe the Bohr model of the hydrogen atom

Intro

- Rutherford's model of the atom was better than the previous model but did not explain how e⁻ were distributed in the atom
 - Opposite charges should attract each other leading to e⁻ in the nucleus
- The new model used the absorption and emission of light

Misconception

• Electrons do NOT actually orbit like planets


Light Characteristics

- Light was thought of as ONLY a wave but later it was discovered that light has ______ like properties
- This lead to the discovery of the current model of the _____

The Wave Description

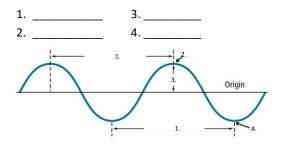
- Electromagnetic radiation is a form of energy that exhibits wavelike behavior as it travels through space. Examples:
- Together, all the forms of electromagnetic radiation form the _____

Electromagnetic Spectrum

Properties of Waves

between corresponding points on adjacent waves.

- ______is defined as the number of waves that pass a given point in a specific time, usually one second.
- Move at _____in a vacuum
 Slightly less in air because air is made of matter


Props cont.

- Using the frequency and wavelength, you can find the speed of the wave $c = \lambda v$
- c = _____ λ = _____ ν = _____

The Wave Nature of Light

- A light is found to have a wavelength of 5.3×10^{-7} m. What is the frequency of the light?
- An electromagnetic wave has a frequency of 2.6 x 10⁹ Hz. What is the wavelength?

Props Cont.

Quick Demo

- Super Slinky
- Move back and forth 1/sec
 Observe Wavelength
- Move back and forth 2/sec

- Observe wavelength

• What is the difference?

Photoelectric Effect

- The ______refers to the emission of electrons from a metal when light shines on the metal
 - Scientists thought that all light should result in electron emission, but this was not true
- It requires a minimum about of NRG to eject and electron
 - Different types of radiation (light) have different amounts of ______!

Analogy

- You are trying to knock down 3 milk bottles at the county fair
- Would you choose 3 baseballs or 12 ping pong balls?

The Particle Description of Light

- Max Planck discovered light can be small units of NRG, called _____
- A **quantum** of energy is the _____ quantity of energy that can be lost or gained by an atom.

The Particle Description of Light

- A **photon** is a particle of electromagnetic radiation having _____mass and carrying a _____of energy.
- The energy of a particular photon depends on the ______of the radiation
- Planck went of to propose the following relationship

 $E_{\rm photon} = h v$

^L photon –	•		
h =			
v=			

Practice Problems

- Calculate the NRG of a photon with a frequency of 5.3×10^{-7} .
- What is the frequency of a photon that has 2.58 x $10^{\text{-}46}\text{J}$ of NRG?

The Particle Description of Light

- Albert Einstein proposed in 1905 that light has a ______.
- A beam of light has _____ and _____ properties.
- A photon is a particle of electromagnetic radiation with _____ mass that carries a ______ of energy.

H Atom Line Emission Spectrum

- The _____ energy state of an atom is its **ground state.**
 - You can add NRG to an atom which results in an ______state
- A state in which an atom has a

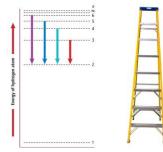
_____ potential energy than

it has in its ground state is an excited state.

• When it returns to its ground state, it ______ NRG in the form of ______

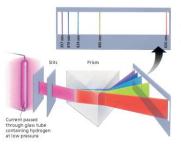
H Atom Line Emission Spectrum

- When investigators passed electric current through a vacuum tube containing hydrogen gas at low pressure, they observed the emission of a characteristic _____ glow.
- When a narrow beam of the emitted light was shined through a prism, it was separated into _______ specific colors of the visible spectrum.
- The four bands of light were part of what is known as hydrogen's ______


H Atom Line Emission Spectrum

• Scientist expected to see all light (continuous spectrum) but only got the specific spectrum

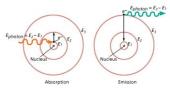
- Continuous Spectrum is a ______


Bohr's Model of the Atom

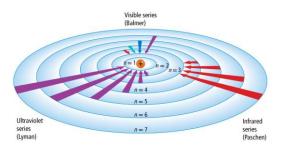
Demo

• Atomic Line Spectrum for H...and more!

H Atom Line Emission Spectrum


Excited hydrogen atoms emit a pinkish glow. When the visible portion of the emitted light is passed through a prism, it is separated into specific wavelengths that are part of hydrogen's line-emission spectrum.

Bohr Model of the H Atom


- Niels Bohr proposed a hydrogen-atom model that linked the atom's electron to emission.
- Bohr stated, the electron can circle the nucleus only in allowed paths, or
 - The electrons stayed in their _____ when at _____, leaving empty space between them and the

Bohr Model of the H Atom

- When the e⁻ absorbed NRG it moved to a orbit and them back down to a
- _____orbit — Ladder Ex.
 - Higher up = More NRG

Other Series

The Quantum Model of the Atom

4.2

Objectives

- **Discuss** Louis de Broglie's role in the development of the quantum model of the atom.
- Compare and contrast the Bohr model and the quantum model of the atom.
- Explain how the Heisenberg uncertainty principle and the Schrödinger wave equation led to the idea of atomic orbitals.
- List the four quantum numbers and describe their significance.
- **Relate** the number of sublevels corresponding to each of an atom's main energy levels, the number of orbitals per sublevel, and the number of orbitals per main energy level.

e⁻ have wave-like props

- French scientist Louis de Broglie suggested that electrons be considered waves confined to the space around an atomic nucleus.
- It followed that the electron waves could exist only at ___ _____frequencies.
- According to the relationship _____, these frequencies corresponded to specific energies— ____, these the quantized energies of Bohr's orbits.

e⁻ have wave-like props

· Electrons, like light waves, can be bent, or

- refers to the bending of a wave as it passes by the edge of an object or through a small opening.
- Electron beams, like waves, can interfere with each other.
- __occurs when waves overlap
- Fig 2.1 on page 99

de Broglie equation

• The de Broglie equation predicts that all moving particles have wave characteristics.

$$\lambda = \frac{h}{m\nu} \qquad \begin{array}{c} \lambda = \underline{\qquad} \\ h = \underline{\qquad} \\ m = \underline{\qquad} \\ \nu = \underline{\qquad} \end{array}$$

Planck's constant = ______

Practice

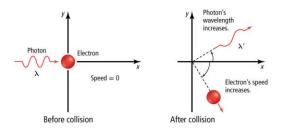
- An electron has a frequency of 8.2 x 10¹⁴. What is the wavelength for this electron?
- An electron has a wavelength of 2.66 x 10⁻⁷, what is the electrons frequency?

Heisenberg uncertainty principle

- Theoretical physicist Werner Heisenberg showed it is impossible to take any measurement of an object without disturbing it.

Heisenberg uncertainty principle

- Imagine trying to find a helium filled balloon in a dark room and the room has a large fan running. You run around until you touch it, but this would cause it to move. So...
 - You know where is WAS, not where it IS
- After you strike the balloon, you could measure its velocity, but you do not know the velocity BEFORE you struck it.


Heisenberg uncertainty principle

- Now, you are trying to find an electron!!
- When you "see" and electron, you are seeing light (a photon) that has reflected off of the electron
- The problem is that when the photon hits the electron it changes the position and the velocity.

Like the balloon

• Hence, Heisenberg's uncertainty principle

Heisenberg uncertainty principle

The Schrödinger Wave Equation

- In 1926, Austrian physicist Erwin Schrödinger developed an equation that treated electrons in atoms as ______.
- Together with the Heisenberg uncertainty principle, the Schrödinger wave equation laid the foundation for ______.
- Quantum theory describes mathematically the wave properties of electrons and other very small particles.

The Schrödinger Wave Equation

- Electrons do not travel around the nucleus in _____, as Bohr had postulated.
- Instead, they exist in certain regions called

_____·

• An orbital is a _____

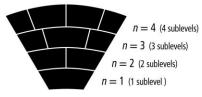
Analogy

- Think of a planes propeller..
 - When it is not moving you can tell where it is
 - When is starts moving, its harder to tell
 - Eventually it is virtually impossible and the propeller looks like a disc
- Electrons
 - Move so fast they are considered to be in a cloud
 Areas where you could find an electron

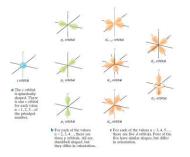
Atomic Orbitals and Quantum #s

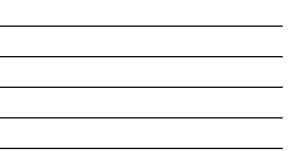
- ______specify the properties of atomic orbitals and the properties of electrons in orbitals.
- The _____, symbolized by _____, indicates the main energy level occupied by the electron.
- The ______, symbolized by ______, indicates the shape of the orbital.

Atomic Orbitals and Quantum #s


- The _____, symbolized by *m*, indicates the orientation of an orbital around the nucleus.
- The _____has only two possible values—(+1/2, -1/2)—which indicate the two fundamental spin states of an electron in an orbital.

Hydrogen's Atomic Orbitals


- So, '_____' indicates the atoms NRG level
- 'n' specifies the atom's major energy levels, called the _____.
- 'n' can range from _____ to ____, ____ being the lowest possible principle NRG level - Periodic Table NRG Level


Hydrogen's Atomic Orbitals

- Each principle NRG level has NRG sublevels
- The sublevels are labeled, ____, ____, and _____

Shapes of s, p, and d Orbitals

Hydrogen's Atomic Orbitals

- Principle NRG level 1 consists of a _____ orbital
- Principle NRG level 2 consists of a _____ orbital and _____ orbitals
- Principle NRG level 3 consists of a _____ orbital, _____ orbitals, and _____ orbitals
- Principle NRG level 4 consists of a _____ orbital, _____ orbitals, _____ orbitals, and _____ orbitals

Hydrogen's Atomic Orbitals

- The most electrons that an orbital can hold is
- The s orbitals can have a max of _____ electrons
- The p orbitals can have a max of _____ electrons
- The d orbitals can have a max of _____ electrons
- The f orbitals can have a max of _____ electrons

Principle NRG Levels

Principal energy level	Sublevels available	Number of orbitals in sublevel $(2\ell + 1)$		Total electrons possible for energy level (2 <i>n</i> ²)
1				2
2	p^{s}			
3			$\begin{array}{c}2\\6\\10\end{array}$	
4	-	1 3 5 7		

What shape is a p orbital?

- A. Dumbell
- B. Sphere
- C. Box
- D. None of the above

How many sublevels are there when the principle quantum number is 3

- A. 1
- B. 2
- C. 3
- D. 4
- E. 7
- F. 9
- G. 14
- H. None of the above

How many orbitals can there be when

the principle quantum number is 3

- A. 1
- B. 2
- C. 3
- D. 5
- E. 9
- F. 11
- G. 14
- H. None of the above

What orbitals are electrons found in for a non excited atom when the principle

- quantum number = 2?
- A. S
- B. S and p
- C. S, p and d
- D. S, p, d, and f
- E. None of the above

Electron Configuration

Objectives

- List the total number of electrons needed to fully occupy each main energy level.
- **State** the *Aufbau principle*, the *Pauli exclusion principle*, and *Hund's rule*.
- **Describe** the electron configurations for the atoms of any element using *orbital notation*, *electron-configuration notation*, and, when appropriate, *noble-gas notation*.

e⁻ configurations

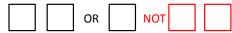
- Electron configuration is the arrangement of e⁻ in an atom
- Electrons tend to be in the <u>NRG state</u> possible because this is the
- This fact will help in determining where the electrons are in an atom
- The most stable, lowest NRG state is called the
 _____electron configuration

Electron Configuration

- There are 3 rules that determine where electrons are found:
 - 1._____
 - 2._____
 - 3._____

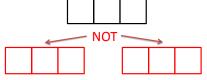
Electron Configuration

- The ______states that each electron occupies the lowest energy orbital available.
- Each box represents an atomic orbital
- Remember...
 2 electrons
 Per orbital


11	2	75	7p	6d	5f
			6p	5d	41
		65 55	5p	4d	
Urbital filing sequence	energy	45	4p	3d	
tal film	Guisea	35	3р	1	
5	INC	25	2p	et's look at th IRG level loca	
		1 5		ow, let's look odic table	at the

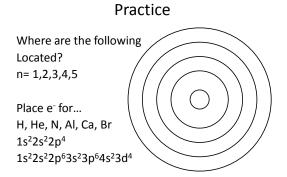
Electron Configuration

Features of the Aufbau Diagram				
All orbitals related to an NRG sublevel have equal NRG	All three "2p" orbitals have the same NRG			
In multi-electron atoms, the NRG sublevel within a principal NRG level have different energies.	The three "2p" orbitals have more NRG than the "2s" orbitals			
In order of increasing NRG, the sequence of NRG sublevels within a principal NRG level is s, p, d, and f	If n = 4, the sequence of NRG sublevels is 4s, 4p, 4d, 4f			
Orbitals related to NRG sublevels within one principal NRG level can overlap orbitals related to NRG sublevels within another principal level.	The "45" sublevel has less NRG than the "3d" orbitals.			


Electron Configuration

- The ______states that a maximum of two electrons can occupy a single orbital, but only if the electrons have _____spins.
- An arrow pointing up represents an electron with an "upward" spin
- An unoccupied orbital is an open box (no arrows)

Electron Configuration


• Hund's rule states that single electrons with the _____must occupy each equal-energy orbital before additional electrons with opposite spins can occupy the same energy level orbitals.

Practice – Electron Configuration

Element	Atomic #	Orbital Diagram	e [.] configuration notation
н	1		15 ¹
He	2	♠₩	15 ²
Li	3	♠₩ ♠	15 ² 25 ¹
Be			
F			

You try Be and F!

Electron Configuration Notation

How to write electron configuration notation

(NRG Level)(Sublevel)^(Electron in sublevel)

Example

$H = 1s^{1}$	
He = 1s ²	
$Li = 1s^2 2s^1$	Shorthand = [He] 2s ¹
$Be = 1s^2 2s^2$	Shorthand = [He] 2s ²

Electron Configuration Notation (Shorthand)

Element	Atomic #	e ⁻ configuration notation	e ⁻ configuration notation (shorthand)
В	5	1s ² 2s ² 2p ¹	[He] 2s ² 2p ¹
Mg	12		
	16		
		1s² 2s² 2p ⁶ 3s² 3p ³	
			[Ar] 4s ²

Electron Configuration

• Noble gas notation uses noble gas symbols in brackets to shorten inner electron configurations of other elements.

Table 5.5	Electron Configurations for Elements 11–18			
Element	Atomic Number	Complete Electron Configuration	Electron Configuration Using Noble Gas	
Sodium	11	1s ² 2s ² 2p ⁶ 3s ¹	[Ne]3s ¹	
Magnesium	12	1s ² 2s ² 2p ⁶ 3s ²	[Ne]3s ²	
Aluminum	13	1s ² 2s ² 2p ⁶ 3s ² 3p ¹	[Ne]3s ² 3p ¹	
Silicon	14	1s ² 2s ² 2p ⁶ 3s ² 3p ²	[Ne]3s ² 3p ²	
Phosphorus	15	1s22s22p63s23p1	[Ne]3s ² 3p ³	
Sulfur	16	1s22s22p63s23p4	[Ne]3s ² 3p ⁴	
Chlorine	17	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵	[Ne]3s ² 3p ⁵	
Argon	18	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	[Ne]3s ² 3p ⁶ or [Ar]	

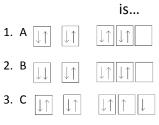
Electron Configuration

- The electron configurations (for chromium, copper, and several other elements) reflect the <u>increased stability</u> of half-filled and filled sets of s and d orbitals.
- Ex. Cr = [Ar] $4s^2$ $3d^4$ is actually $4s^1$ $3d^5$ Cu = [Ar] $4s^2$ $3d^9$ is actually $4s^1$ $3d^{10}$

This goes for the entire column

Practice

- Page 107
- Page 115
- Page 116


**Side note... the # of arrows needs to match the # of e^{-} for a neutral atom

The electron configuration for nitrogen

is...

- 1. 1s¹ 2s² 2p³
- $2. \ 1s^2 \ 2s^2 \ 2p^3$
- 3. $1s^2 2s^2 2p^5$
- 4. 1s² 2s⁵
- 5. Non of the above

The atomic orbital diagram for oxygen

4. None of the above

The electron configuration for Mg is $$[{\rm He}]\ 2s^2$$

- 1. Yes
- 2. No