Chapter 12

Solutions

Key Ideas

- Distinguish between heterogeneous and homogeneous mixtures
- List 3 different solute-solvent combinations
- Compare the properties of suspensions, colloids, and solutions
- Distinguish between electrolytes and nonelectrolytes

Section 12.1

TYPES OF MIXTURES

Solutions are homogeneous mixtures

- When something is **soluble**, it means it can dissolve
- A **solution** is a homogeneous mixture of 2 or more <u>uniformly</u> mixed substances
 - Examples?

Homogeneous vs Heterogeneous

• Homogeneous mixtures are mixed evenly like...

• Heterogeneous mixtures are mixed **un**evenly like...

Solutions

- A solution contains a solvent and a solute
- The **solvent** is the substance that is <u>doing</u> the dissolving
- The solute is the substance <u>being</u> dissolved
 Usually the substance that has a smaller quantity in the solution

Solution Examples

- Identify the solvent and the solute in the following examples of solutions
 - A glass of sea water
 - Kool-aid
 - 22 karat gold ring
 - A mixture of 30% acetic acid and water
 - 7 salt cubes placed in a gallon of water
 - Carbon dioxide in your soda
 - Brass is made of 70% Cu and 30% Zn

Solute-solvent combos

Solute State	Solvent State	Example
Gas	Gas	Air
Gas	Liquid	Carbon dioxide in water
Liquid	Liquid	Alcohol in water
Liquid	Solid	Hg in Ag (fillings)
Solid	Liquid	Sugar in water
Solid	solid	Cu in Ni

You should be able to identify the Solute-Solvents in the solution

ID the solute-solvent combo

• ОНННННН ҮЕАННННН

ID the solute-solvent combo

- Identify the solute-solvent combos
 - A glass of sea water
 - Kool-aid
 - 22 karat gold ring
 - A mixture of 30% acetic acid and water
 - $-\,7$ salt cubes placed in a gallon of water
 - Carbon dioxide in your soda
 - Brass is made of 70% Cu and 30% Zn

Suspensions

• A suspension contains solute particles that are so large they settle out of solution

– Examples

Colloids

- Colloids contain particles larger than solutions but smaller than suspensions
 - These particles are light/small enough to stay afloat but they will reflect light
 - They stay afloat because the particle movement is enough to keep the colloid "stirred"
 - The *dispersed phase* is the substance that is "floating" in the *dispersing medium*
 - These typically look cloudy
 - River water

Colloid Types

Class of Colloid	Phases	
Sol	S in L	Paint, mud
Gel	Solid throughout (matrix)	Gelatin, JELLO
Liquid emulsion	L in L	Milk, mayonnaise
Foam	G in L	Shaving cream
Solid aerosol	S in G	Smoke, dusty air
Liquid aerosol	L in G	Fog, clouds
Solid emulsion	L in S	Cheese, butter

You should be able to identify the colloid types

Tyndall Effect

• Colloids can undergo the Tyndall Effect – The particles in the colloid will reflect light

http://www.silver-lightning.com/tyr

dall/

Properties

Solutions	Colloids	Suspension
Homogeneous	Heterogeneous	Heterogeneous
0.01-1 nm	1-1000 nm	> 1000 nm
Particle will not settle out	Particle will not settle out	Particle WILL settle out
Cannot be physically separated (filter, etc.)	Cannot be physically separated	Can be physically separated
Does NOT scatter light	Does scatter light	Does scatter light

Electrolytes

- When a substance dissolves in water, they can be classified as ionic or molecular
- When ionic substances dissolve, they separate into their cations and anions
- These ions are available to move around making it possible for the solution to conduct electricity
 - Electrolytes are the substances that are dissolved in water to allow it to conduct electricity
 - Nonelectrolytes do not conduct electricity when dissolved in water

Examples

• Electrolytes:

• Nonelectrolytes:

Assignment

• 12.1 Worksheet

Section 12.2 THE SOLUTION PROCESS

Key Ideas

- List and explain 3 factors that affect the rate at which a solid solute dissolves in a liquid solvent
- Explain solution equilibrium, and distinguish among saturated, unsaturated, and supersaturated
- Explain the meaning of "likes dissolve likes" in the terms of polar and nonpolar substances

Key Ideas

- List 3 interactions that contribute to enthalpy of solution and explain how they combine to cause dissolution to be exothermic or endothermic
- Compare the effect of temperature and pressure on solubility

Factors that impact dissolving

- 1. Increase the surface area of the solute
 - 1. Why?
 - 1. Crush sugar vs sugar cube
- 2. Agitate the solution
 - 1. Why?
 - 1. Stir
- 3. Heat the solution
 - 1. Why
 - 1. Heat

Solubility

- Solubility is a measure of how well one substance dissolves in another
 - High solubility = dissolves wellSugar water
 - Something can be insoluble
 Rock and water, oil and water
- There is a limit to solubility
 - i.e. the solute will not dissolve anymore
 - For example, adding sugar to water

Solubility

- When the solute dissolves in the solvent...
 - Solute particles break apart and float around
 - Some of these solute particles may run into each other and recrystallize (i.e. make a solid)
 - Eventually, the number or molecules returning to solid state and the number dissolving is equal
 - Solution Equilibrium is the physical state when this happens

Saturation Point

- The saturation point is the point where you have dissolved the max amount of solute
 - This can change depending on the temp and amount of solvent

Solution types

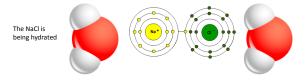
- Saturated solution contains the max amount of dissolved solute
- Unsaturated solution contains the less than the max amount of dissolved solute
- Supersaturated solution contains more than max amount of dissolved solute
 - This is usually done by adding/removing heat

Sat, Unsat, Supersat, or None?

- 1 grain of sugar in 1 cup of water
- 1 tsp of salt in 1 cup of water
- 4 lbs of sugar in 1 gallon of water
- You place a crystal of X into the solution and it floats to the bottom
- You place a crystal of Z into the solution and the rest of the crystals come out of solution

Solubility Values

- The **solubility** of a substance is the amount of substance required to form a saturate solution with a specific amount of solvent at a specific temperature.
 - WHAT!!!???
- Re word...


Substance	0°C	40°C	60°C	100°C
NaCl	35.7	36.4	37.1	39.2
AgNO ₃	122	311	440	733

Dissolving Ionic Cmps in Aq Solutions

- Likes dissolve likes
- Polar molecules (water) will dissolve polar molecules (ionic cmps)
 - They do NOT dissolve nonpolar molecules
- Nonpolar molecules will dissolve nonpolar molecules
 - They do NOT dissolve polar molecules
 - Example of nonpolar???

Hydration

- Hydration is the process when water is the solvent
- Water is polar and this polarity is what helps dissolve ionic cmps

Nonpolar dissolving

- Oils and fats are nonpolar so they do not dissolve in water

 Examples:
- We need a nonpolar solvent for them to dissolve (carbon tetrachloride)

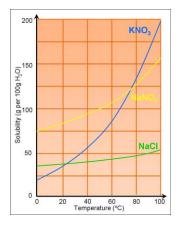
Liquid Solutes and Solvents

- Immiscible liquids do NOT mix (not soluble)
 Example: water and gasoline
- **Miscible** liquids DO mix (they dissolve freely in each other)
 - Example: Ethanol and water

Effect of Pressure on Solubility

- Pressure increases have very little effect on solids and liquids
- Gas are impacted by pressure differences
 - You can "force" more gas molecules into the solutions if you increase the pressure
 - Example: soda

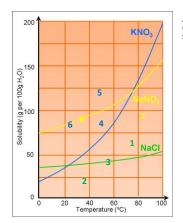
Equilibrium Gas + Solvent Zolution


Gas + Solvent 🕳 Solution	Gas + Solver	nt 🔁 Solution
Increase P	Decrease P	Video

Henry's Law

- Henry's Law states the solubility of a gas in a liquid is directly proportional to the partial pressure of that gas on the surface of the liquid.
- This is why carbon dioxide stays in the soda when the top is closed
- When you open it effervesces
- Effervescence is the rapid escape of a gas from a liquid in which is dissolved

Effects of Temp on Solubility


 Temperature usually increases solubility – Why?

Solubility Curve

Unsaturated Saturated Supersaturated

How do you use this?

Are the following "numbers" Unsaturated, Saturated, or Supersaturated?

1	
2	
2 3	
4	
4 5	
6	
7	

A Change in NRG Accompanies Solution Formation

Quick Demo

- Dissolve NaOH in water
 - What do you notice about the outside of the beaker?

A Change in NRG Accompanies Solution Formation

- NRG is required to break the bonds holding each substance together (i.e. the Na to the Cl)
- The solute particle that is surrounded by solvent molecules is said to me **solvated**.
- The net NRG absorbed as hear by the solution when a specific amount of solute dissolves in solvent is the **enthalpy of solution**.
- Figure 2.12 on page 393

A Change in NRG Accompanies Solution Formation

Assignment

- 12.2 Worksheet
- POGIL Saturated and Unsaturated (In Class)
- POGIL Solubility (In Class)

12.3 CONCENTRATIONS OF SOLUTIONS

Key Ideas

- Molarity is moles of solute per liter of solution
- Molarity is moles of solute per kg of solvent

Concentration

- Think of something "concentrated". How would you describe it to someone without using the concentrated?
- **Concentration** of a solution is the measure of the amount of solute in a given amount of solvent/solution.

Molarity is Moles of Solute per Liter of Solution

- **Molarity** is the number of moles of solute in 1 liter of solution
 - Example: a 1 molar solution of NaOH has
 1 Mole of NaOH dissolved in 1 Liter of water
 - Example: a 2 molar solution of NaOH has
 - 2 Mole of NaOH dissolved in 1 Liter of water
 - What if you don't have 1 liter of solution???

Molarity is Moles of Solute per Liter of Solution

 $Molarity(M) = \frac{amount \ of \ solute(mol)}{volume \ of \ solution(L)}$

- 1. Determine the molarity of a solution that has dissolved 2.3 moles of X in a 4 L solution?
- 2. How many moles of NaOH where dissolved to make 2.5 liters of 6 M solution?
- 3. You dissolve 150 grams of NaCl into 3 liters of water, what is the molarity of the solution?

Preparation of 1 liter of an "X" M Solution

- 1. Determine the amount of solute needed
- 2. Pour 500 mL (1/2) into your container
- 3. Pour your "X" into the container
- 4. Fill the container to the 1 L mark

You want to create 1 L of a 2.5 M solution of NaCl

• Determine the amount of NaCl you need

 $Molarity(M) = \frac{amount \ of \ solute(mol)}{volume \ of \ solution(L)} \longleftarrow Solve$

- Convert the moles into grams
 <u>2.5 mole NaCl</u> 58.45 g NaCl = 146.13 g NaCl
 1 mole NaCl
- This is how much NaCl you need for this solution

You want to create 1 L of a 2.5 M solution of NaCl

- Fill the container with ½ of the final volume of your solution (i.e. 500 mL)
- Put your 146.13 grams of NaCl into the water
- Shake/Stir
- Fill to the 1 L mark

Why can't you just put 146.13 grams of NaCl into 1 L of water?

 $Molarity (M) = \frac{amount of A (mol)}{volume of solution (L)}$

Practice

You have 3.50 L of solution that contains 90.0 g of sodium chloride, NaCl. What is the molarity of that solution?

 $Molarity(M) = \frac{amount of A(mol)}{volume of solution(L)}$ Practice

You have 0.8 L of a 0.5 M HCl solution. How many moles of HCl does this solution contain

 $Molarity(M) = \frac{amount of A(mol)}{volume of solution(L)}$

Practice

To produce 40.0 g of silver chromate, you will need at least 23.4 g of potassium chromate in solution as a reactant. All you have on hand is 5 L of a 6.0 M K₂CrO₄ solution. What volume of the solution is needed to give you the 23.4 g K₂CrO₄ needed for the reaction?

Help: Find moles of K_2 CrO₄ needed then convert that to volume using the Molarity formula.

Molality

 Molality (m) is the concertation of a solution expressed in moles of solute per kg of solvent

 $Molality(m) = \frac{moles \ of \ solute(mol)}{mass \ of \ solvent(kg)}$

 MolaRity and MolaLity are similar because they both give you a concentration, the difference is molaLity does NOT depend on temperature

 Why?

Comparison

 $Molarity(M) = \frac{amount of A(mol)}{volume of solution(L)}$

 $Molality(m) = \frac{amount of A(mol)}{mass of solvent(kg)}$

Preparation of m solution

- Same as molaRity but you use the mass of each of the substance and mix them
 - i.e. you do not add the NaCl to 500 mL of water and then fill to 1 L
- You just measure and mix

Example

- You want a 0.5 m solution of copper (II) sulfate pentahydrate
- Add EXACTY 1 kg (or 1 L) to the container
- Add 124.8 g of copper (II) sulfate pentahydrate
- Mix

 $Molality(m) = \frac{amount of A(mol)}{mass of solvent(kg)}$ Practice

A solution was prepared by dissolving 17.1 g of sucrose (table sugar, $C_{12}H_{22}O_{11}$) in 125 g of water. Find the molality concentration of this solution.

 $Molality(m) = \frac{amount of A(mol)}{mass of solvent(kg)}$

Practice

A solution of iodine, I_2 , in carbon tetrachloride, CCl₄, is used when iodine is needed for certain chemical tests. How much iodine must be added to prepare a 0.480 *m* solution of iodine in CCl₄ if 100.0 g of CCl₄ is used?

Assignment

- 12.3 Worksheet
- POGIL Molarity (In Class)