Chapter 8

Chemical Equations and Rxns

8.1

\qquad

Describing Chemical rxns

Objectives

- List three observations that suggest that a chemical reaction has taken place.
- List three requirements for a correctly written chemical equation.
- Write a word equation and a formula equation for a given chemical reaction.
- Balance a formula equation by inspection.

Chemical Rxns

- A chemical reaction is the process by which one or more substances are changed into one or more different substances.
- In any chemical reaction, the original substances are known as the reactants and the resulting substances are known as the products.
- According to the law of conservation of mass, the total mass of reactants must equal the total mass of products for any given chemical reaction

Chem rxn

- Evidence of a chemical reaction (most of the time) \qquad
- Change in color
- Odor, gas, or bubbles may form.
- NRG is released as heat or light
- Temp change
- Precipitate (ppt) is formed
- Ppt is a solid that is produced as a result in a chemical rxn

Chemical Equation

- A chemical equation represents, with symbols \qquad and formulas, the identities and relative molecular or molar amounts of the reactants and products in a chemical reaction.
- Ex.
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Representing Chemical Reactions

\qquad

- Chemists use statements called equations to represent chemical reactions.

Reactants are the starting substances.	Symbol	Purpose
	+	Separates 2 or more reactant or products
Products are the substances formed in the reaction.	\rightarrow	
	Double ara	Reversil
This table summarizes the symbols used in chemical equations.	(s)	Sild 5
	(1)	Liquid sam
	(8)	Gas
	(a)	Aqueous state

Representing Chemical Reactions

\qquad

- In word equations,
aluminum (s) + bromine (I) \rightarrow aluminum bromide (s)
reads as "solid aluminum and liquid bromine react to produce solid aluminum bromide".
\qquad
\qquad
\qquad
- Skeleton equations use symbols and formulas to represent the reactants and products. \qquad

$$
\mathrm{Al}(\mathrm{~s})+\mathrm{Br}(\mathrm{I}) \rightarrow \mathrm{AlBr}_{3}(\mathrm{~s})
$$

Diatomics

- They start on 7
- There are 7
- They look like a 7... and H
- DON'T forget these
- They are diatomics when by THEMSELVES and in the GAS state

Example

- $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (g)
- H_{2} and O_{2} are diatomics because they are...
- By themselves
- In the gas state (not Br or I)
- $\mathrm{H}_{2} \mathrm{O}$ are NOT diatomics because they are NOT.. \qquad
- By themselves (i.e. in a cmpd)

Formula Equation

\qquad

- A formula equation represents the reactants \qquad and products of a chemical reaction by their symbols or formulas \qquad
- Ex. Hydrogen gas and oxygen gas react to produce dihydrogen monoxide gas (this is a word equation) \qquad
- Ex. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Balancing Chemical Reactions

- A coefficient in a chemical equation is the \qquad number written in front of a reactant or product, describing the lowest whole-number ratio of the amounts of all the reactants and products. \qquad
- The coefficients are in red

$$
\begin{aligned}
& \mathrm{Al}(\mathrm{~s})+\mathrm{Br}_{2}(\mathrm{~g})-->\mathrm{AlBr}_{3}(\mathrm{~s}) \\
& 2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Br}_{2}(\mathrm{~g})-->2 \mathrm{AlBr}_{3}(\mathrm{~s})
\end{aligned}
$$

Question???

$\mathrm{Al}(\mathrm{s})+\mathrm{Br}_{2}-->\mathrm{AlBr}_{3}$

Why is it Br_{2} and not just Br ?

Why is the product AlBr_{3} and not just AlBr ?

How to Balance a Chem Equation

\qquad

- Write the skeletal equation \qquad
- Hydrogen gas and oxygen gas react to produce dihydrogen monoxide gas \qquad
- $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- Count the atoms on the reactant side
- 2 Hydrogen and 2 Oxygen

What did that mean??

- This is where you MUST remember the
\qquad
- Diatomics (H, N, O, F, Cl, Br, I)
- The correct chemical symbols for elements
- The correct chemical formula for a molecule or compound
- Put the reactants on one side and the products on the other

How to Balance a Chem Equation

\qquad

- Count the atoms on the products side
$-\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (g)
-2 hydrogens and 1 oxygen
- Change the coefficients to make both sides equal each other
$\mathbf{- 2} \mathrm{H}_{2}$ (g) $+\mathrm{O}_{2}$ (g) $\rightarrow \mathbf{2} \mathrm{H}_{2} \mathrm{O}$ (g)
-2 of each on both sides!

What did that mean??

\qquad

- This is where you MUST remember the
\qquad
- Diatomics (H, N, O, F, Cl, Br, I)
- The correct chemical symbols for elements
- The correct chemical formula for a molecule or compound
- Put the reactants on one side and the products on the other
- Reduce coefficents \qquad
- If possible (usually not)
- Double check work
- ALWAYS do this!

What does that mean???

- This is where you...
- Reduce your coefficients
- $2 r+2 t$--> $4 r t$
- Reduces to $r+t$--> $2 r t$
- Double check, it is the only way to make sure you did it correctly
- This is usually a trial and error process

One thing to remember...

Subscripts can
 NOT

be added or subtracted

Practice

- Liquid water decomposes into hydrogen gas and oxygen gas
- Solid sodium oxide reacts with liquid iron (III) sulfate to produce solid iron (III) oxide and liquid sodium sulfate.
- Lithium nitride reacts with oxygen gas to produce lithium oxide and nitrogen gas (HARD)

Practice

- Page 254
$-1 a$
$-2 a$
-3 (nitrogen gas)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Why is a chem equation important? \qquad

- They indicate the relative amount of reactants \qquad and products
- $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ (I)
- There are...
-2 molecules of hydrogen \qquad
- 1 molecule of oxygen
-2 molecules of water \qquad

Why is a chem equation important? \qquad

- The relative masses can be determined \qquad
- $2 \mathrm{H}_{2}$ (g) $+\mathrm{O}_{2}$ (g) $\rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ (I)
- i.e. convert moles to grams
- Hydrogen $=4.04 \mathrm{~g}$
- Oxygen $=32 \mathrm{~g}$
- Water $=36.04 \mathrm{~g}$

Why is a chem equation important? \qquad

- The reverse rxn for a chem equation has the same relative amount of substances as the forward rxn
- Reversible rxn is a chemical rxn where the product re-form the reactant
- It goes in reverse while going forward!

What a chem equation does NOT do

\qquad

- An equation gives no indication of whether a \qquad reaction will actually occur.
- Chemical equations give no information about
\qquad the speed at which reactions occur.
- Equations do not give any information about how the bonding between atoms or ions changes during the reaction.

Hydrogen and oxygen gases react to form liquid water

1. $\mathrm{H}(\mathrm{g})+\mathrm{O}(\mathrm{g})-->\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
2. $2 \mathrm{H}(\mathrm{g})+\mathrm{O}(\mathrm{g})$--> $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
3. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})-->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
4. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$--> $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
5. None of the above

You can change coefficients when writing a chemical equation.

1. True
2. False

Which of the following is balanced properly?

1. $\mathrm{Cl}_{2}+2 \mathrm{H}-->2 \mathrm{HCl}$ \qquad
2. $4 \mathrm{H}_{2} \mathrm{O}->4 \mathrm{H}_{2}+2 \mathrm{O}_{2}$
3. $2 \mathrm{SO}_{2}+\mathrm{O}_{2}-\mathrm{-} 2 \mathrm{SO}_{3}$
4. $\mathrm{Na}+\mathrm{Cl}-->\mathrm{NaCl}$
5. All of the above
6. None of the above

Which of the following is balanced properly?

1. $\mathrm{NaCl}_{2}-->\mathrm{Na}+\mathrm{Cl}_{2}$
2. $\mathrm{H}_{2}+\mathrm{O}_{2}-->\mathrm{H}_{2} \mathrm{O}$
3. $2 \mathrm{Al}+2 \mathrm{Br}_{2}-->2 \mathrm{AlBr}_{3}$
4. $\mathrm{NaOH}-->\mathrm{Na}+2 \mathrm{OH}$
5. All of the above
6. None of the above

Homework

- Page 260
$-2,5$
- Word to formula and vise versa worksheet

8.2 \qquad
\qquad
Types of Chemical Rxns

Which of the following is balanced properly?

1. $\mathrm{NaCl}_{2}-->\mathrm{Na}+\mathrm{Cl}_{2}$
2. $2 \mathrm{H}_{2}+\mathrm{O}_{2}-->2 \mathrm{H}_{2} \mathrm{O}$
3. $2 \mathrm{Al}+2 \mathrm{Br}_{2}-->2 \mathrm{AlBr}_{3}$
4. $\mathrm{NaOH}-->\mathrm{Na}+2 \mathrm{OH}$
5. All of the above
6. None of the above

Which is balanced properly?

1. $\mathrm{Na}(\mathrm{s})+\mathrm{Cl}(\mathrm{g})-->\mathrm{NaCl}(\mathrm{s})$ \qquad
2. $2 \mathrm{Na}(\mathrm{s})+2 \mathrm{Cl}(\mathrm{g})-->2 \mathrm{NaCl}(\mathrm{s})$
3. Both
\qquad
4. Neither

Objectives

- Define and give general equations for \qquad synthesis, decomposition, singledisplacement, and double-displacement \qquad reactions.
- Classify a reaction as a synthesis, \qquad decomposition, single-displacement, doubledisplacement, or combustion reaction.
- List three kinds of synthesis reactions and six kinds of decomposition reactions.

Objectives (Cont)

- List four kinds of single-displacement \qquad reactions and three kinds of doubledisplacement reactions. \qquad
- Predict the products of simple reactions given the reactants. \qquad
\qquad
\qquad
\qquad

Rxn Types

- 5 rxn types
-Synthesis
-Decomposition
-Single Displacement (replacement)
-Double Displacement (replacement)
-Combustion

Synthesis

\qquad

- In a synthesis reaction, also known as a \qquad composition reaction, two or more substances combine to form a new compound \qquad
- General Equation

$$
A+X \rightarrow A X
$$

- A and X can be elements or compounds. \qquad
- $A X$ is a compound

Synthesis Reaction

- A synthesis reaction can be: \qquad
- 2 elements forming 1 compound
-1 element and 1 compound forming 1 compound
-2 compound forming 1 compound
$A+X$--> AX

Rxns with O and S

\qquad

- Almost all metals react with oxygen to form oxides
- Example

$$
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s})
$$

- Group 1 and 2 metal react with sulfur to produce sulfides

$$
\begin{aligned}
16 \mathrm{Rb}(s)+\mathrm{S}_{8}(s) & \rightarrow 8 \mathrm{Rb}_{2} \mathrm{~S}(s) \\
8 \mathrm{Ba}(s)+\mathrm{S}_{8}(s) & \rightarrow 8 \mathrm{BaS}(s)
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Active Metals

\qquad

- Active metals are highly reactive \qquad
- These metals react with water to produce metal hydroxides
\qquad
\qquad

$$
\mathrm{CaO}(s)+\mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})
$$

Synthesis Practice

\qquad

- Rxn between... \qquad
- H and O
- Li and O \qquad
- BeO and water
- Aluminum oxide and water

Decomposition Rxns

- In a decomposition reaction, a single compound undergoes a reaction that produces two or more simpler substances.
\qquad

These are the opposite of synthesis rxns

- General Equation

$$
A X \rightarrow A+X
$$

Decmop (cont)

- The decomposition of a substance by an \qquad electric current is called electrolysis.
- Example

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \xrightarrow{\text { deetracter }} 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

- Example (when heated)

$$
2 \mathrm{HgO}(\mathrm{~s}) \longrightarrow 2 \mathrm{Hg}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})
$$

Special Decomp rxns

- Decomp of Metal Carbonates
- Produces metal oxide and carbon dioxide

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \xrightarrow{\Delta} \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

- Decmop of Metal Hydroxides
- Produce metal oxide and water (except G1)

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \xrightarrow{\Delta} \mathrm{CaO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Special Decomp rxns

- Decmop of Metal Chlorates
- Produce metal chloride and oxygen

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \xrightarrow\left[\mathrm{NBO}_{2}(\mathrm{sl}]{\Delta} 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})\right.
$$

Decomp Practice

\qquad

- NaOH \qquad
- Water
- $\mathrm{Li}_{2} \mathrm{CO}_{3}$
- $\mathrm{Ca}\left(\mathrm{ClO}_{3}\right)_{2}$
\qquad
\qquad
\qquad
\qquad
\qquad

Single-Displacment Rxn

- In a single-displacement reaction, also known \qquad
as a replacement reaction, one element replaces a similar element in a compound. \qquad
- Most of these rxns happen in aqueous solutions \qquad
- General Equation

$$
\begin{aligned}
& A+B X \rightarrow A X+B \\
& Y+B X \rightarrow B Y+X
\end{aligned}
$$

\qquad
\qquad
\qquad

Special SR Rxns

- Active metals (G1) in water
- Produce metal hydroxide and hydrogen

$$
2 \mathrm{Na}(s)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{NaOH}(a q)+\mathrm{H}_{2}(g)
$$

- Less active metals in water (steam)
- Produce metal oxide and hydrogen

$$
3 \mathrm{Fe}(s)+4 \mathrm{H}_{2} \mathrm{O}(g) \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(g)
$$

Replacement Reactions

\qquad

- In replacement reactions, non-metals replace \qquad non-metals and metals replace metals

Which will switch?

$$
\begin{aligned}
& \mathrm{CaBr}_{2}+\mathrm{Cl}_{2}--> \\
& \mathrm{KCl}+\mathrm{Al} \mathrm{-->} \\
& \mathrm{~K}+\mathrm{NaCl}--> \\
& \mathrm{F}_{2}+\mathrm{Mgl}_{2}--> \\
& \mathrm{MgO}+\mathrm{Ca}-->
\end{aligned}
$$

Double Displacement Rxns

- In double-displacement reactions, the ions of two compounds exchange places in an aqueous solution to form two new compounds.
- One of the following are usually formed
- Bubbles (gas)
- Ppt
- Water (hard to see this one)
- The other cmpd is usually soluble and stay in the solution

DD Rxns

- General equation
- $\mathrm{AX}+\mathrm{BY} \rightarrow \mathrm{AY}+\mathrm{BX}$
- Example (ppt formation)
$2 \mathrm{KI}(a q)+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q) \rightarrow \mathrm{PbI}_{2}(s)+2 \mathrm{KNO}_{3}(a q)$
- Where is the ppt?

Replacement Reactions

\qquad

- Either you can look at it as the METALS switch \qquad places OR the NON-METALS switch places
- Again, the metals switch with each other or the non-metals switch with each other
\qquad
\qquad
A switches with B or X switches with Y

DD Rxns

- Gas formation

$$
\mathrm{FeS}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{H}_{2} \mathrm{~S}(g)+\mathrm{FeCl}_{2}(a q)
$$

- Water formation

$$
\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

DD Practice

- $\mathrm{CaO}+\mathrm{Li}_{3} \mathrm{P} \rightarrow$
- $\mathrm{Fe}(\mathrm{OH})_{2}+\mathrm{Li}_{3} \mathrm{P} \rightarrow$

Combustion

\qquad

- In a combustion reaction, a substance combines with oxygen, releasing a large amount of energy in the form of light and
\qquad heat.
- Example (with H)

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- Example (Propane)

$$
\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g
$$

\qquad

Determining Rxn Type \qquad

- Synthesis = \qquad
- Decomp =
- $\mathrm{SR}=$
- $\mathrm{DD}=$
- Combustion $=$

Determining Rxn Type

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Which of the following is a single replacement rxn?

1. $2 \mathrm{H}_{2}+\mathrm{O}_{2}-->2 \mathrm{H}_{2} \mathrm{O}$ \qquad
2. $2 \mathrm{NaCl}-->2 \mathrm{Na}+\mathrm{Cl}_{2}$
3. $\mathrm{Al}+3 \mathrm{ZnCl}-->3 \mathrm{Zn}+$ AlCl_{3}
4. $\mathrm{NaCl}+\mathrm{AgNO}_{3}-->\mathrm{NaNO}_{3}$ $+\mathrm{AgCl}$
5. More than 1
6. None of the above \qquad
\qquad

Which of the following is a synthesis
rxn?
\qquad

1. $2 \mathrm{H}_{2}+\mathrm{O}_{2}-->2 \mathrm{H}_{2} \mathrm{O}$
2. $2 \mathrm{NaCl}-->2 \mathrm{Na}+\mathrm{Cl}_{2}$
3. $\mathrm{Al}+3 \mathrm{ZnCl}-->3 \mathrm{Zn}+$ AlCl_{3}
4. $\mathrm{NaCl}+\mathrm{AgNO}_{3}-->\mathrm{NaNO}_{3}$ $+\mathrm{AgCl}$
5. More than 1
6. None of the above

A precipitate is a...

1. Solid \qquad
2. Liquid
3. Gas
4. More than 1
5. None of the above

Assignment

- 8.2 Worksheet \qquad
- 8.2 Practice Problem
- Page 270
\qquad
-1-4

Activity Series of the Elements
8.3

Objectives

- Explain the significance of an activity series.
- Use an activity series to predict whether a given reaction will occur and what the products will be.

Activity Series of the Elements

\qquad

- "Activity" is used when discussing an elements \qquad ability to react
- More reactive $=$ higher activity
- An activity series is a list of elements organized according to the ease with which the elements undergo certain chemical reactions.
- For metals, greater activity means a greater ease of loss of electrons, to form positive ions.
- For nonmetals, greater activity means a greater ease of gain of electrons, to form negative ions.

Replacement Reactions

- A metal will not always replace

\qquad a metal in a compound dissolved in water because of differing reactivities.
- An activity series can be used to predict if reactions will occur.
- Activity Series Handout
- Second $\mathrm{Ca} \rightarrow \mathrm{Na}$

Chlorine
Bromine
Iodine Least
active lodine

Replacement Reactions

\qquad

- If the element is higher on the activity series, it will replace the lower element
Ex. $\quad \mathrm{Zn}$ will replace Cu
Mg will not replace K
- Some other rules also apply
- See Activity Series
- The Halogens are also on the Series list

Replacement Reactions

\qquad

- In replacement reactions, non-metals replace \qquad non-metals and metals replace metals

Which will switch?
$\mathrm{CaBr}_{2}+\mathrm{Cl}_{2}-->$
\qquad
$\mathrm{KCl}+\mathrm{Al}$-->
$\mathrm{K}+\mathrm{NaCl}-->$
$\mathrm{F}_{2}+\mathrm{Mgl}_{2}-->$
$\mathrm{MgO}+\mathrm{Ca}$-->

Single Replacement Reactions

1. Will the reaction occur?

* Look at the Activity Series

2. Write out the skeleton equation.
3. Balance the equation.

Assignment

- Activity Series Wkst
- Page 273
- 1-3

