Ch 5

The Periodic Law

Section 5.1

History of the Periodic Table

Objectives

- Explain the roles of Mendeleev and Moseley in the development of the periodic table.
- Describe the modern periodic table.
- **Explain** how the periodic law can be used to predict the physical and chemical properties of elements.
- **Describe** how the elements belonging to a group of the periodic table are interrelated in terms of atomic number.

Development of the Periodic Table

- In the 1700s, Lavoisier compiled a list of all the known elements of the time.
 - There were ______ elements organized into ______ categories

Lavoisier's Table of Simple Substances (most of them)						
	Light, heat, inflammable air					
	Au, Co, Cu, Sn, Fe, Mg, Hg, Au, Pb, Zn, W, Ni, At					
	S, P, Charcoal					
	Chalk, Magnesia, Clay, Siliceous earth					

Development of the Periodic Table

- The 1800s brought large amounts of information and scientists needed a way to organize knowledge about elements.
- One of the largest was the agreement on

This allowed one scientists results to be reproduced

Mendeleev and Chemical Periodicity

_____took all the known elements and placed their info on cards

- He moved these cards around and looked for
- He noticed that when the elements were arranged by increasing ______, their properties repeated every ______
 It repeated ______
- This is eventually where the "Periodic" Table name comes from

Mendeleev and Chemical Periodicity

arranged the elements by increasing ______ but also arranged them into ______

– Each element in the column has

 Mendeleev actually predicted where missing elements would be placed!!

• This was called the periodic table of elements!

The missing elements...

Predicted elements	Element and year discovered	Properties	Predicted properties	Observed properties	
Ekaaluminum	gallium	density of metal	6.0 g/mL	5.96 g/mL	
	1875	melting point	low	30°C	
		oxide formula	Ea ₂ O ₃	Ga ₂ O ₃	
Ekaboron	scandium	density of metal	3.5 g/mL	3.86 g/mL	
	1877	oxide formula	$\rm Eb_2O_3$	Sc_2O_3	
		solubility of oxide	dissolves in acid	dissolves in acid	
Ekasilicon	germanium 1886	melting point	high	900°C	
		density of metal	5.5 g/mL	5.47 g/mL	
		color of metal	dark gray	grayish white	
			EsO_2	GeO_2	
		density of oxide	4.7 g/mL	4.70 g/mL	
		chloride formula	EsCl ₄	GeCl ₄	

Mendeleev and Chemical Periodicity

- The fact that Mendeleev predicted there were missing elements and the properties they would have persuaded scientists to accept his table.
- But... there were still 2 questions
 - 1. _____

2. _____

Mendeleev and Chemical Periodicity

- Mendeleev's table was not completely correct. ☺
- After several new elements were discovered and the ______ were determined more accurately, several elements did

Moseley and the Periodic Table

_____ rearranged the table by
increasing ______ (not _____),
and resulted in a clear periodic pattern.

• Periodic repetition of chemical and physical properties of the elements when they are arranged by increasing atomic number is called

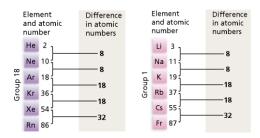
• Moseley's work led to the definition of ______ and the use of it to

___.

The Modern PT

•	The Periodic Table is an arrangement of the					
	elements in order of their	so				
	that elements with similar	fall				
	in the same					

- Where are the following?
 - Groups, Periods, Families
 - Metals, NM, Metalloids


Noble Gases


- Sir William Ramsey discovered the first ______ in 1868, Ar.
 - The noble gases were difficult to find because
 - Eventually all of the gases were discovered
- This discovery is important because he proposed a new group to the PT and placed it between ______

Lanthanides and Actinides

- The transition elements are divided into and .

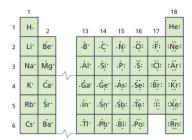
Periodicity of Atomic #'s

Electron Config and the PT

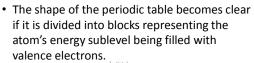
Section 5.2

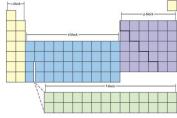
Objectives

- Explain the relationship between electrons in sublevels and the length of each period of the periodic table.
- Locate and name the four blocks of the periodic table. Explain the reasons for these names.
- **Discuss** the relationship between group configurations and group numbers.
- **Describe** the locations in the periodic table and the general properties of the alkali metals, the alkaline-earth metals, the halogens, and the noble gases.


Periods are determined by e⁻ config.

- The length of each period (# of elements) is determined by the ______
- The periodic table is divided into four blocks, the ___, ___, and __ blocks. The name of each block is determined by the electron sublevel being filled in that block.


Quick Activity


- Write the e⁻ config for Mg, Ca, F, and Cl
 - Compare them
 - What do you notice?
 - What would you expect Sr's or I's e⁻ config to look like?

Organizing Elements by Electron Configuration

The s-, p-, d-, and f-Block Elements

The s-, p-, d-, and f-Block Elements

- s-block elements consist of group ____ and ___, and the element ______.
- Group ____ elements have a partially filled s orbital with _____electron.
- Group ____ elements have a completely filled s orbital with _____ electrons.

The s-, p-, d-, and f-Block Elements

- After the s-orbital is filled, valence electrons occupy the ______.
- Groups 13-18 contain elements with completely or partially filled ______.

The s-, p-, d-, and f-Block Elements

- The d-block contains the _____ block.
- There are exceptions, but d-block elements usually have filled outermost s orbital, and filled or partially filled d orbital.
- The five d orbitals can hold _____ electrons, so the d-block spans _____ groups on the periodic table.

The s-, p-, d-, and f-Block Elements

- The _____ contains the inner transition metals.
- f-block elements have filled or partially filled outermost s orbitals and filled or partially filled 4f and 5f orbitals.
- The 7 f orbitals hold _____ electrons, and the inner transition metals span _____ groups.

Examples

- e⁻ config can determine period
 - Boron: 1s² 2s² 2p¹
 - The highest occupied NRG level is 2p - So, Boron is in the p block
 - You try...
 - 1s² 2s² 2p⁶ 3s² 3p³
 - Which block is the element located?
 - What is the identity of the element?
 - 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁷
 - Which block is the element located?
 - What is the identity of the element?

Quick Activity

- Get a partner
 - 1 student chose an element for the PT
 - The other student identifies the highest occupied NRG level
- You have 1 minute...GO

Sample Problems

a. Without looking at the periodic table, identify the group, period, and block in which the element that has the electron configuration $[Xe]6s^2$ is located.

b. Without looking at the periodic table, write the electron configuration for the Group 1 element in the third period.

S-block Elements: Groups 1 & 2

• These elements are chemically reactive, some extremely reactive!

•

	are all the elements in group
1 except	, and are <u>very</u>
reactive.	
1	
2	
3	
4.	

H and He

 H is located in G1 but _____ properties with G1 – In fact, it does not share props with any groups

He in in G18 but has 2 valence e^{-,} like G2
 It is in G18 because it has a _____ and is _____

S-block Elements: Groups 1 & 2

	are in group 2, and are also
	·
1.	
2.	
3.	
4.	

d-block Elements: Groups 3-12

- Max of _____ orbitals and ______ e⁻
- Consist of transition metals
- _____ metals in groups 3-12

•

p-block elements: Groups 13-18

elements in Groups 1,2,13-18

 The total # of e⁻ in the highest occupied NRG level is (Group # - 10)

_ – are

- i.e. C has 4 (14-10)
- The properties of the elements ______
 - Metals, Metalloids, Nonmetals, Noble Gases

p-block elements: Groups 13-18

- _____elements in group 17
- React vigorously with ______
 NaCl
- This is because they are _____
- _____ found freely in nature

• Except Bi

f-block: Lanthanide and Actinides

• Not much else to say

Electron Config and Periodic Props

Section 5.3

Objectives

- Define atomic and ionic radii, ionization energy, electron affinity, and electronegativity.
- **Compare** the periodic trends of atomic radii, ionization energy, and electronegativity, and state the reasons for these variations.
- **Define** valence electrons, and state how many are present in atoms of each main-group element.
- **Compare** the atomic radii, ionization energies, and electronegativities of the *d*-block elements with those of the main-group elements.

PT Trends

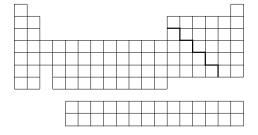
- Many properties of the elements tend to change in a predictable way
- As you move across periods or up/down groups you will notice trends

Atomic Radius

 ______ is a periodic trend influenced by electron configuration.

- _____ may be defined as one-half the distance between the nuclei of identical atoms that are bonded together.

Atomic Radius


- There is a general _____ in atomic radius from left to right
 - Caused by _____ positive charge in the nucleus.
- The outside ______ are attracted the ______ nucleus
- More protons =

Atomic Radius

- Atomic radius generally ______ as you move down a group.
- The outermost orbital size ______ down a group, making the atom

• More NRG levels =

Atomic Radius

Practice

- Which has the largest atomic radii? Smallest?
 Li, O, C, F
- Why?

Practice

- Which has the larges atomic radii? Smallest?
 Sr, Be, Ca, Ba
- Why?

Valence Electrons

- ______ an electron in the outer NRG level of an atom.
- These electrons are available to be

_____, or

- Discuss
 - Group # and v e^{-}
 - Ion formation in groups

e^{-} dot notation

- Each element has valence electrons, the e⁻ in the ______ NRG level
 - Examples on board
- The energy level of an element's valence electrons indicates the ______ on the periodic table in which it is found.
- The number of valence electrons for elements in groups 13-18 is ______ than their group number.

Ionization NRG

______ – an atom or group of atoms bonded that have a positive or negative charge

______ – any process that results in the formation of an ion

Ionization NRG

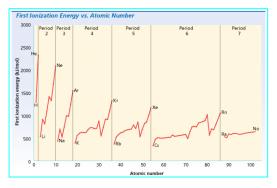
General Equation for Ion Production

Element + NRG \rightarrow Ion⁺¹ + e_{π}^{-}

This is the Production of an electron. It does not mean the addition of an electron.

• Ion Example (Na⁺, O⁻²)

- How many electrons did Sodium lose? Oxygen?

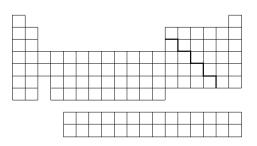

Ionization NRG

_– The NRG required to remove 1

- e⁻ from an atom
- This may happen _____than once for an atom
 First Ionization NRG, Second Ionization NRG...
- Removing the second electron requires energy, and is called the second ionization energy (IE₂).
- Each successive ionization requires _____energy, but it is not a steady

Ionization NRG

- In general, ionization energies of the maingroup elements _____ across each period. 1. ______ 2. _____
- Among the main-group elements, ionization energies generally _____down the groups. 1. _____ 2. _____


Ionization NRG

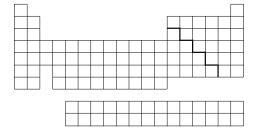
Ionization NRG

Table 6.5				od 2 E						
Element	Valence Electrons	Ionization Energy (kJ/mol)*								
		152	2 nd	3rd	4 th	5 th	6 th	7 th	8th	9th
Li	1	520	7300						1	
Be	2	900	1760	14,850						
В	3	800	2430	3660	25,020					
С	4	1090	2350	4620	6220	37,830				
N	5	1400	2860	4580	7480	9440	53,270			
0	6	1310	3390	5300	7470	10,980	13,330	71,330		
F	7	1680	3370	6050	8410	11,020	15,160	17,870	92,040	
Ne	8	2080	3950	6120	9370	12,180	15,240	20,000	23,070	115,380

* mol is an abbreviation for mole, a quantity of matter.

Ionization NRG

Practice


Electron Affinity

- What do you have an affinity for?
 - Sports ?, Cars ?, Family?, Job ? Make up ?
 - So, what does affinity mean?
- _____ the NRG change that occurs when
 - an $e^{\scriptscriptstyle \mathsf{T}}$ is acquired by a neutral atom
 - The larger the _____ number the _____ affinity there is for an electron
 - A "_____" are too difficult to establish

Electron Affinity

- Electron affinity generally _____ across periods.
 1. ______
- Electron affinity generally _____ down groups.
 - 1. _____

Electron Affinity

Ionic Radius

- _____a positive ion
 - Ex.?
- _____ formation results in a _____ in atomic radius
- ______– a negative ion
 _______ formation results in a ______ in
- atomic radius

Ionic Radius

• When atoms lose electrons and form positively charged ions, they always become smaller for two reasons:

2._____

1._____

Ionic Radius

1. The loss of a valence electron can leave an empty outer orbital resulting in a small radius.

- _____ electrons are attracted to the same positive charge

- Now there is more _____ charge than _____ charge

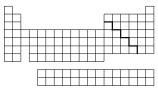
- smaller radius

Ionic Radius

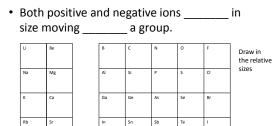
- 2. Electrostatic repulsion decreases allowing the electrons to be pulled closer to the radius.
 - _____ electrons means less _____

repulsion

- smaller radius


Ionic Radius

• When atoms gain electrons, they can become ______, because the addition of an electron ______ electrostatic repulsion.

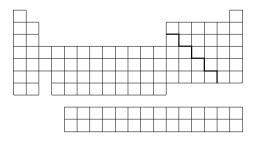


Ionic Radius

- The ionic radii of positive ions generally ______ from left to right.
- The ionic radii of negative ions generally ______ from left to right, beginning with group 15 or 16.

Ionic Radius

Pb Bi


Electronegativity

- The ______ states that atoms tend to gain, lose or share ______ in order to acquire a ______ set of ______ valence electrons.
- The _____ rule is useful for predicting what types of ions an element is likely to form.

Electronegativity

- The _____ of an element indicates its relative ability to _____ electrons in a chemical bond.
- _____ down a group and
 _____ left to right across a period.
- Electronegativity ability to attract an electron
- Higher electronegativity =

Electronegativity

Electronegativity vs others learned

- Electronegativity is a relationship between atoms in cmpds
- Electron Affinity and Ionization are properties of isolated atoms

Electronegativity decreases down a group

- A. True
- B. False

The Higher electronegativity the ...

- A. Higher the attraction of electrons
- B. Higher the repulsion of electrons
- C. Both
- D. Neither

Ionization NRG increases across the PT.

A. True

B. False

The higher the ionization NRG the...

- A. Harder it is to remove a proton
- B. Easier it is to remove a proton
- C. Harder it is to remove an electron
- D. Easier it is to remove an electron
- E. More than 1 of the above
- F. None of the above