Chapter 9

Stoichiometry

Intro to Stoichiometry

9.1

Objectives

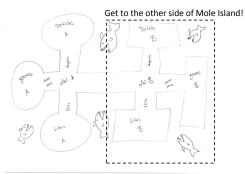
- Define stoichiometry.
- **Describe** the importance of the *mole ratio* in stoichiometric calculations.
- Write a mole ratio relating two substances in a chemical equation

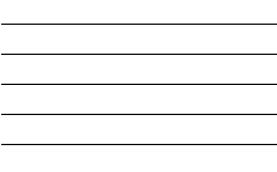
Stoich Definitions

- **Composition stoichiometry** deals with the mass relationships of elements in compounds.
- **Reaction stoichiometry** involves the mass relationships between reactants and products in a chemical reaction.

VC - Stoich

Stoich


- Stoichiometry is based on the law of conservation of mass.
- The mass of reactants equals the mass of the products.


Stoich

- A **mole ratio** is a ratio between the numbers of moles of any two substances in a balanced equation.
- Example

• 2 H₂O --> 2 H₂ + O₂ $\frac{2 H_2 O}{2 H_2}$ $\frac{2 H_2 O}{1 O_2}$ $\frac{2 H_2}{1 O_2}$ $\frac{2 H_2}{2 H_2 O}$ $\frac{1 O_2}{2 H_2 O}$ $\frac{1 O_2}{2 H_2}$

What can we do with Stoich?

Stoich

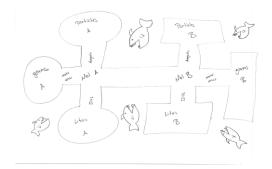
- The mole ratio is the key to getting to the other side!
- It will give you the ratio between the reactants and the product that will be produced

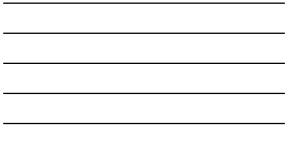
Assignment

• 9.1 Worksheet

Ideal Stoich Calculations

9.2


Objectives


- **Calculate** the amount in moles of a reactant or a product from the amount in moles of a different reactant or product.
- **Calculate** the mass of a reactant or a product from the amount in moles of a different reactant or product

Objectives (cont)

- **Calculate** the amount in moles of a reactant or a product from the mass of a different reactant or product.
- **Calculate** the mass of a reactant or a product from the mass of a different reactant or product.

Get it out and get ready for some FUN!

Mole to Mass

- Example $4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$
- How many grams of Fe₂O₃ are produce when you start with 8 moles of Fe?

 $\frac{8 \text{ mol Fe } 2 \text{ mol Fe}_2O_3 | 159.70 \text{ g Fe}_2O_3(s)}{4 \text{ mol Fe } 1 \text{ mol Fe}_2O_3} = 638.8 \text{ g Fe}_2O_3$ Mole ratio
grams / mole

Practice

- Page 289
 - 1 In class
 - 2 You!

Moles to mass (and vice versa)

- $4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$
- How many grams of oxygen does it take to produce 6 moles of Fe₂O₃?
- 1. Convert from moles of Fe_2O_3 to moles of O_2
- 2. Convert from moles of O_2 to grams of O_2

 $\frac{6 \text{ mol Fe}_2O_3 \ 3 \text{ mol } O_2 \ 32 \text{ grams of } O_2 \ 288 \text{ grams } O_2}{2 \text{ mol Fe}_2O_3 \ 1 \text{ mol } O_2} = 288 \text{ grams } O_2$

Practice

- Page 291
 - 1 In class
 - 2 You!
- Page 293
 - 1 You!

Mass to Mass

• Example

$4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$

- How many grams of Fe are needed to produce 529 grams of Fe_2O_3 ?
- 1. Convert grams of Fe_2O_3 into moles of Fe_2O_3
- 2. Convert moles of Fe₂O₃ into moles of Fe
- 3. Convert moles of Fe into grams of Fe

Practice

- Page 295 (white box)
 - 1 In Class
 - 2 You!

Assignment

• 9.2 Worksheet

Limiting Reactants and Percent Yield

9.3

Objectives

- **Describe** a method for determining which of two reactants is a limiting reactant.
- **Calculate** the amount in moles or mass in grams of a product, given the amounts in moles or masses in grams of two reactants, one of which is in excess.
- **Distinguish** between theoretical yield, actual yield, and percentage yield.
- Calculate percentage yield, given the actual yield and quantity of a reactant.

Limiting Reactants

- Reactions proceed until one of the reactants is used up and one is left in excess.
- The **limiting reactant** limits the extent of the reaction and, thereby, determines the amount of product formed.
- The excess reactants are all the leftover unused reactants.

Limiting Reactant

- Ex. 300 people want a hamburger for lunch and there are only 250 hamburgers for lunch
- The limiting reactant is the hamburgers and the excess reactant is the people
- The same can be applied to a chemical equation!

- $C + O_2 \rightarrow CO_2$
- 1 mole of C reacts with 1 mole of O to produce 1 mole of CO₂
- If you have 10 moles of carbon and 15 moles of oxygen, how many carbon dioxides can you make?

•10, because after 10 there is no more carbon available

Why do Reactions Stop?

• Determining the limiting reactant is important because the amount of the product formed depends on this reactant.

Before Reaction		After Reaction	
88	+ 0000	→ 	0
Three nitrogen molecules (six nitrogen atoms)	Three hydrogen molecules (six hydrogen atoms)	Two ammonia molecules (two nitrogen atoms, six hydrogen atoms)	Two nitrogen molecules (four nitrogen atoms)

Cheese Burger

- You want to make as many cheese burgers as possible.
- Each cheese burger needs: 2 buns slices, 1 patty, 1 slice of cheese, 4 pickles, 3 onion slices, and 1 olive.
- How many cheese burgers can you make if you have the following: 36 buns slices, 22 patties, 25 slices of cheese, 80 pickles, 48 onion slices, and 78 olives?
- What is/are the limiting reactant(s)?
- What is/are the excess reactant(s)?

Demo

- Colored Circles on board
 - How many ____ can you make from _____ and _____

Method for figuring out which reactant is limiting

- Calculate the amount of moles of the other reactant, B, which is required by A
- Find the number of moles/grams of B
- Then compare the calculated amount with the amount of B you actually have
- If the required amount is more than you have available, B is the limiting reactant
- If the required amount is less than you have available, B is the excess reactant (A it limiting)
- $SiO_2 + 4 HF \rightarrow SiF_4 + 2H_2O$
- If 2 moles of HF is combined with 4.5 moles of SiO₂, which is the limiting reactant?
- 2 mol HF x $\underline{1 \text{ mole SiO}}_2 = \mathbf{0.50 \text{ mol SiO}}_2$ 4 mol HF
- So, under ideal conditions, 2 moles of HF will require 0.50 moles of SiO₂ for a complete reaction.
- Since you have 4.5 moles of SiO_2 available, <u>HF is the limiting reactant</u>
- SiO₂ + 4 HF → SiF₄ + 2H₂O
- If 2 moles of HF is combined with 4.5 moles of SiO₂, which is the limiting reactant?
- 4.5 mol SiO₂ x <u>4 moles HF</u> = **18 mole of HF** 1 mol SiO₂
- So, under ideal conditions, 4.5 moles of SiO₂ will require 18 moles of HF for a complete reaction.
- Since you have 2 moles of HF available, <u>HF is the</u> <u>limiting reactant</u>
- You get the <u>SAME</u> limiting reactant both ways

More Practice

- $SiO_2 + 4 HF \rightarrow SiF_4 + 2H_2O$
- You have 1234 grams of HF and combine it with 2222 grams of SiO₂, which is the limiting reactant? HAVE
- <u>1234 g HF</u> 1 mol HF 1 mol SiO₂60.09 g SiO₂ 20.1 g HF 4 mol HF 1 mole SiO₂
 - = 922.28 grams of SiO₂ NEED SO HF is limiting

Practice

- Page297
 - 1 In Class
- Page 299
 - 1 You!
- 9.2 Practice Problems wkst
 - 1 In Class

Assignment

- 9.3 Worksheet to STOP 1
- There is more practice on the LR Problem Sets

Percent Yield

- The theoretical yield is the maximum amount of product that can be produced from a given amount of reactant.
 - what you get from doing the reactions from yesterday
- The **actual yield** of a product is the measured amount of that product obtained from a reaction.
 - What you "actually" got in a reaction
 - May be given to you (worksheets) or what you measured in a lab experiment

Percent Yield

• The **percentage yield** is the ratio of the actual yield to the theoretical yield, multiplied by 100

 $Percent \, Yield = \frac{Actual \, Yield}{Theoretical \, Yeild} * 100$

Practice

$\mathrm{C_6H_6}\left(\mathrm{I}\right) + \mathrm{Cl_2(g)} \rightarrow \mathrm{C_6H_5Cl(I)} + \mathrm{HCl(g)}$

- When 36.8 g C_6H_6 react with an excess of Cl2, the actual yield of C_6H_5Cl is 38.8 g.
- What is the percentage yield of C₆H₅Cl?

Step 1

Write down Givens:

Mass of $C_6H_6 = 36.8 \text{ g}$ Mass of $CI_2 = \text{excess}$ Actual yield of $C_6H_5CI = 38.8 \text{ g}$ % Y = _____

Step 2

Find Theoretical Yield (from yesterday) Lets do this...

Step 3

Find % Yield

 $Percent Yield = \frac{Actual Yield}{Theoretical Yeild} * 100$

Actual yield of $C_6H_5CI = 38.8 \text{ g}$ Theoretical Yield $C_6H_5CI = 53 \text{ g}$

Percent Yield = $\frac{38.8 g}{53} * 100 = 73.2\%$

Practice

- Page 302
 - 1 In Class
 - 2 You!

Assignment

• 9.3 Worksheet (Finish)