Chapter 9

Stoichiometry

Intro to Stoichiometry

9.1

Objectives

- Define stoichiometry.
- Describe the importance of the mole ratio in stoichiometric calculations.
- Write a mole ratio relating two substances in a chemical equation

Stoich Definitions

- Composition stoichiometry deals with the mass relationships of elements in compounds.
- Reaction stoichiometry involves the mass relationships between reactants and products in a chemical reaction.

Stoich

- Stoichiometry is based on the law of conservation of mass.
- The mass of reactants equals the mass of the products.

Stoich

- A mole ratio is a ratio between the numbers of moles of any two substances in a balanced equation.
- Example
- $2 \mathrm{H}_{2} \mathrm{O}-->2 \mathrm{H}_{2}+\mathrm{O}_{2}$
$\frac{2 \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{H}_{2}} \quad \frac{2 \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{O}_{2}} \quad \frac{2 \mathrm{H}_{2}}{1 \mathrm{O}_{2}}$
$\frac{2 \mathrm{H}_{2}}{2 \mathrm{H}_{2} \mathrm{O}} \quad \frac{1 \mathrm{O}_{2}}{2 \mathrm{H}_{2} \mathrm{O}} \quad \frac{1 \mathrm{O}_{2}}{2 \mathrm{H}_{2}}$

What can we do with Stoich?

Stoich

- The mole ratio is the key to getting to the other side!
- It will give you the ratio between the reactants and the product that will be produced

Assignment

- 9.1 Worksheet

Ideal Stoich Calculations

9.2

Objectives

- Calculate the amount in moles of a reactant or a product from the amount in moles of a different reactant or product.
- Calculate the mass of a reactant or a product from the amount in moles of a different reactant or product

Objectives (cont)

- Calculate the amount in moles of a reactant or a product from the mass of a different reactant or product.
- Calculate the mass of a reactant or a product from the mass of a different reactant or product.
\qquad

Mole to Mass

\qquad

- Example $\quad 4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
- How many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produce when you start with 8 moles of Fe ?
\qquad
\qquad
\qquad
8 mol Fe $\left|2 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}\right| 159.70 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})=638.8 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$

Practice

- Page 289
-1 - In class
- 2 - You!

Moles to mass (and vice versa)

- $4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
- How many grams of oxygen does it take to produce 6 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?

1. Convert from moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ to moles of O_{2}
2. Convert from moles of O_{2} to grams of O_{2}

6 mol Fe	O_{3}	$3 \mathrm{~mol} \mathrm{O}_{2}$
	$2 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$	$1 \mathrm{~mol} \mathrm{O}_{2}$

Practice

- Page 291
- 1 - In class
- 2 - You!
- Page 293
- 1 - You!

Mass to Mass

- Example

$$
4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

- How many grams of Fe are needed to produce 529 grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?

1. Convert grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ into moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$
2. Convert moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ into moles of Fe
3. Convert moles of Fe into grams of Fe

$529 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$	$1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$	4 mol Fe	55.85 g Fe
	$159.7 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$	$2 \mathrm{~mol} \mathrm{Fe} \mathrm{O}_{3}$	1 mol Fe

Practice

- Page 295 (white box)
- 1 - In Class
- 2 - You!

Assignment

- 9.2 Worksheet \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Limiting Reactants and Percent
Yield
9.3

Objectives

- Describe a method for determining which of two reactants is a limiting reactant.
- Calculate the amount in moles or mass in grams of a product, given the amounts in moles or masses in grams of two reactants, one of which is in excess.
- Distinguish between theoretical yield, actual yield, and percentage yield.
- Calculate percentage yield, given the actual yield and quantity of a reactant.

Limiting Reactants

- Reactions proceed until one of the reactants is used up and one is left in excess.
- The limiting reactant limits the extent of the reaction and, thereby, determines the amount of product formed.
- The excess reactants are all the leftover unused reactants.

Limiting Reactant

- Ex. 300 people want a hamburger for lunch and there are only 250 hamburgers for lunch
- The limiting reactant is the hamburgers and the excess reactant is the people
- The same can be applied to a chemical equation!

- $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
- 1 mole of C reacts with 1 mole of O to produce 1 mole of CO_{2}
- If you have 10 moles of carbon and 15 moles of oxygen, how many carbon dioxides can you make? more carbon available
\qquad

Why do Reactions Stop?

- Determining the limiting reactant is important because the amount of the product formed depends on this reactant.

Cheese Burger

- You want to make as many cheese burgers as possible.
- Each cheese burger needs: 2 buns slices, 1 patty, 1 slice of cheese, 4 pickles, 3 onion slices, and 1 olive.
- How many cheese burgers can you make if you have the following: 36 buns slices, 22 patties, 25 slices of cheese, 80 pickles, 48 onion slices, and 78 olives?
- What is/are the limiting reactant(s)?
- What is/are the excess reactant(s)?

Demo

- Colored Circles on board

- How many \qquad can you make from \qquad and \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Method for figuring out which reactant is limiting

- Calculate the amount of moles of the other reactant, B, which is required by A
- Find the number of moles/grams of B
- Then compare the calculated amount with the amount of B you actually have
- If the required amount is more than you have available, B is the limiting reactant
- - If the required amount is less than you have available, B is the excess reactant (A it limiting)
- $\mathrm{SiO}_{2}+4 \mathrm{HF} \rightarrow \mathrm{SiF}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
- If 2 moles of HF is combined with 4.5 moles of SiO_{2}, which is the limiting reactant?
- $2 \mathrm{~mol} \mathrm{HF} \times \underline{1 \mathrm{~mole} \mathrm{SiO}_{2}}=0.50 \mathrm{~mol} \mathrm{SiO}_{2}$ 4 mol HF
- So, under ideal conditions, 2 moles of HF will require 0.50 moles of SiO_{2} for a complete reaction.
- Since you have 4.5 moles of SiO_{2} available, HF is the limiting reactant
- $\mathrm{SiO}_{2}+4 \mathrm{HF} \rightarrow \mathrm{SiF}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
- If 2 moles of HF is combined with 4.5 moles of SiO_{2}, which is the limiting reactant?
- $4.5 \mathrm{~mol} \mathrm{SiO}_{2} \times 4$ moles $\mathrm{HF}=18$ mole of HF $1 \mathrm{~mol} \mathrm{SiO}_{2}$
- So, under ideal conditions, 4.5 moles of SiO_{2} will require 18 moles of HF for a complete reaction.
- Since you have 2 moles of HF available, HF is the limiting reactant
- You get the SAME limiting reactant both ways

More Practice

- $\mathrm{SiO}_{2}+4 \mathrm{HF} \rightarrow \mathrm{SiF}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
- You have 1234 grams of HF and combine it with 2222 grams of SiO_{2}, which is the limiting reactant? HAVE
- $1234 \mathrm{~g} \mathrm{HF}|1 \mathrm{~mol} \mathrm{HF}| 1 \mathrm{~mol} \mathrm{SiO}_{2} \mid 60.09 \mathrm{~g} \mathrm{SiO}_{2}$.
$=\mathbf{9 2 2 . 2 8}$ grams of $\mathbf{S i O}_{2}$ NEED
so HF is limiting

Practice

- Page297
- 1 - In Class
- Page 299
- 1 - You!
- 9.2 Practice Problems wkst
- 1 - In Class

Assignment

- 9.3 Worksheet to STOP 1
- There is more practice on the LR Problem Sets

Percent Yield

- The theoretical yield is the maximum amount of product that can be produced from a given amount of reactant.
- what you get from doing the reactions from yesterday
- The actual yield of a product is the measured amount of that product obtained from a reaction.
- What you "actually" got in a reaction
- May be given to you (worksheets) or what you measured in a lab experiment

Percent Yield

- The percentage yield is the ratio of the actual yield to the theoretical yield, multiplied by 100

$$
\text { Percent Yield }=\frac{\text { Actual Yield }}{\text { Theoretical Yeild }} * 100
$$

Practice

$$
\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{I})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{I})+\mathrm{HCl}(\mathrm{~g})
$$

- When $36.8 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6}$ react with an excess of Cl 2 , the actual yield of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ is 38.8 g .
- What is the percentage yield of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$?

Step 1
Write down Givens:

Mass of $\mathrm{C}_{6} \mathrm{H}_{6}=36.8 \mathrm{~g}$
Mass of $\mathrm{Cl}_{2}=$ excess
Actual yield of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}=38.8 \mathrm{~g}$
\% Y = \qquad

Step 2

Find Theoretical Yield (from yesterday) \qquad Lets do this...

Step 3

Find \% Yield

$$
\text { Percent Yield }=\frac{\text { Actual Yield }}{\text { Theoretical Yeild }} * 100
$$

Actual yield of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}=38.8 \mathrm{~g}$
Theoretical Yield $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}=53 \mathrm{~g}$
Percent Yield $=\frac{38.8 g}{53} * 100=73.2 \%$

Practice

- Page 302
- 1 - In Class
- 2 - You!

Assignment

\qquad

- 9.3 Worksheet (Finish)

