Chapter 6

Chemical Bonding

Intro to Chemical Bonding

Objectives

- Define chemical bond.
- Explain why most atoms form chemical bonds.
- Describe ionic and covalent bonding.
- Explain why most chemical bonding is neither purely ionic nor purely covalent.
- **Classify** bonding type according to electronegativity differences.

Quick Review

- · Elements in the same family have similar properties. Why?
- It is because elements in the same family have the same number of valence electrons.
- These valence electrons are very important!!

Chemical Bond

____is the force that holds • A

two atoms together.

- OR... a mutual electrical attraction between nuclei and valence electrons of different atoms that bind the atoms together
- OR... Chemical bonds form by the attraction between the positive nucleus of one atom and the negative electrons of another atom.

How do bonds form?

- Bonds form when atoms, lose, gain, or share electrons
- Ionic Bonds form from the attraction between a _____ and an _____ – _____ and _____ of electrons
 - Typically... _____ and ____
- Covalent bonds form when electrons are

– Typically... _____ and _____

Bonding...

- Bonding between atoms is rarely purely
 _____ or purely ______
- The bonds usually fall somewhere between these to extremes
- You can use ______ to determine the type of bond

Bonding and Electronegativity

Bonding and Electronegativity					
Bond Type	Electronegativity Difference				
Ionic					
Polar-Covalent					
Nonpolar-Covalent					

*These are just guidelines, sometime they are proven incorrect in lab experiments. **We will assume they are always true

Bond Types Cont.

- Nonpolar-covalent bonds happen when the electron(s) are share _____ by each atom resulting in a _____ distribution of charge
- Polar-covalent bonds occur when the atoms ______ the electron(s) equally
- Polar means there is an _____ distribution of charge
 - Poles, like on Earth or a magnet

Practice

- What type of bond will the following atoms form? Which atom is MORE electronegative?
 - Page 153 has electronegativities
 - A. C&H
 - B. C&S
 - C. O&H
 - D. Na & Cl
 - E. Cs & S

Assignment

• 6.1 Wkst

6.2

Covalent Bonding and Molecular Cmpds

Objectives

- Define molecule and molecular formula.
- **Explain** the relationships among potential energy, distance between approaching atoms, bond length, and bond energy.
- State the octet rule.

Objectives Continued

- List the six basic steps used in writing Lewis structures.
- Explain how to determine Lewis structures for molecules containing single bonds, multiple bonds, or both.
- Explain why scientists use resonance structures to represent some molecules.

Molecules

- A _____ is a neutral group of atoms that are held together by covalent bonds.
- A chemical compound whose simplest units are molecules is called a _____

.

Examples of Molecules

Chemical Formula

- A ______ formula indicates the relative numbers of atoms of each kind in a chemical compound by using atomic symbols and numerical subscripts.
 – Examples: H₂O, ______
- A _____ formula shows the types and numbers of atoms combined in a single molecule of a molecular compound.
 - This is a chemical formula for ______ bonded atoms

Why do Atoms Bond???

- Atoms gain _____ when they _____ electrons and form _____ bonds.
- ______ states make an atom more ______.
- _____ valence electrons with other atoms results in _____ electron configurations.
 - More stable b/c less _____ NRG

Example...

- 2 Hydrogen atoms are close enough to each other that their protons and electrons are attracted to each other.
- At the same time, the protons repel each other and the electrons repel each other
- These two forces cancel out to form a covalent bond at a length where the potential energy is at a minimum

The nucleus of one atom attracts the electron cloud of the other atom, and vice versa.

For More info go to Page 169

Formation of a Covalent Bond

- Characteristics of C Bonds
- Bond Length is _____
- When the bond is formed, ______ is released
 - This is the amount of NRG it would take to break the bonds or ______
 - NRG is reported in _____
 - H-H needs ______ kJ of NRG to break the bond

VC - Bond NRG

Bond length and Stability

Bond NRG for Single Bonds

Bond	Ave Bond Length (pm)	Ave Bond NRG (kJ/mol)
H-H		
CI-CI		
Br-Br		
1-1		

Graph Ave Bond Length and Ave Bond NRG. - What correlation to do you see?

Electron Dot Notation

• Any Questions?

Lewis Structure and Structural Formula

• Lewis Structure

•

- The pair of dots representing a shared pair of electrons in a covalent bond is often replaced by a long dash.
 - :<u>F</u> <u>F</u>: OR :<u>F</u>-<u>F</u>:
- A ______ indicates the kind, number, and arrangement, and bonds but not the ______ of the atoms in a molecule
 F – F

8 is GREAT (Octet Rule)

- When atoms bond covalently, they tend to produce _____.
- They are striving to get to _____ (or _____)
 - Nitrogen has 5 v e⁻ so it needs _____
 - Oxygen has 6 v e⁻ so it needs _____
 - Fluorine has 7 v e⁻ so it needs _____
- What about....
 - Cl, C, Si, P, Br, H

Drawing Lewis Structures

(Page 178)

- 1. Calculate the total number of valence electrons
- 2. Divide this number by 2
 - These are your bonding pairs

 Make bonds and electron pairs
- 3. Make single bonds between elements
- 4. Subtract 3 from 2
 - 1. These are the electrons left over for electron pairs and double and triple bonds
- 5. Finish Lewis Structure

Drawing Lewis Structures

- Predict the location of certain atoms.
 - Where are Carbon atoms going to be?
 - Where are halogens going to be?
- Determine the number of electrons available for bonding.
 - Electron Dot
- Determine the number of bonding pairs.
 - Every "Single" electron MUST make a bond

Drawing Lewis Structures

- Place the bonding pairs.
 - Draw all you single bonds first, then if you still need more bonds, try doubles and triples
- Determine whether the central atom satisfies the octet rule.
- Examples to come...

Lewis Structure (Single Bonds)

- Single Bond is a covalent bond where
- Ex.
 - F-F
 - N-N
 - H₂O

- 2 🥰
- The e⁻ that do not bond are called
 "

Practice

- Page 176
- 1-4

Multiple Covalent Bonds

Multiple Covalent Bonds

- Typically, multiple bonds are _____ than singles bonds.
- Bond Strength

Lewis Structure (Multiple Bonds)

- See "Drawing Lewis Structures" Wkst
- Ex.
 - -0_{2}
 - $-CO_2$
 - NOF
 - CH_3I
- Many times "Trial and Error" is the best way to do this.

Exception

• Main-group elements in Periods 3 and up can form bonds with *expanded valence*, involving *more* than eight electrons

Boron tends to bond with 3 elements
Don't worry about this right now

Practice

- Page 178
- 1-2

Resonance

- See Video First!

Assignment

• 6.2 Wkst

6.3

Ionic Bonding and Ionic Cmpds

Objectives

- **Compare** a chemical formula for a molecular compounds with one for an ionic compound.
- **Discuss** the arrangements of ions in crystals.
- **Define** *lattice energy* and explain its significance.
- List and compare the distinctive properties of ionic and molecular compounds.
- Write the Lewis structure for a polyatomic ion given the identity of the atoms combined and other appropriate information.

Ionic Cmpds

- The electrostatic force that holds oppositely charged particles together in an ionic compound is called an _____
- Compounds that contain _____ bonds are called _____ Cmpd.
- _____ ionic compounds contain only <u>two</u> different elements—_____
- Ex. NaCl, NaBr, MgO

Ionic Cmpd

- When 2 or more ions bond, they form a _____ unit
- Formula Unit is _____

• Ex. NaCl, CaF₂

Positive Ion Formation

- A positively charged ion is called a _______
 An easy way to remember this is that a "______"
 looks like a "______"
- This figure illustrates how sodium loses one valence electron to become a sodium cation.

Positive Ion Formation

<u>Sodium ATOM</u>	Sodium ION
1s ² 2s ² 2p ⁶ 3s ¹	1s ² 2s ² 2p ⁶ 3s ⁰ So 1s ² 2s ² 2p ⁶ with a "+1" charge
	There is one more proton than there is electrons

Draw example on board

Quick ?'s

- How many protons in a Li atom? Electrons?
- How many protons in a Li ion? Electrons?
- How did you figure this out??

Positive Ion Formation

• Metals are reactive because they lose valence electrons easily.

Table 7.2	Group 1, 2, and 13 lons			
Group	Configuration Charge of Ion For			
1	[noble gas] ns1	1+ when the s1 electron is lost		
2	[noble gas] ns ²	2+ when the s ² electrons are lost		
13	[noble gas] ns^2np^1 3+ when the s^2p^1 electrons are lo			

Positive Ion Formation

- Transition metals commonly form 2+ or 3+ ions, but can form greater than 3+ ions.
- Other relatively stable electron arrangements are referred to as pseudo-noble gas configurations.
- Zn has a full outer [Ar] s, p, and d orbital

$$\begin{array}{c} \underline{Zn} \\ \hline 1 & 1 & 1 & 1 \\ 4s & 3d \end{array} + energy \rightarrow$$

$$[Ar] \underbrace{Zn^{2+}}_{3d} + 2e^{-3}$$

Positive Ion Formation

- Transition metals can form many different ions, with different charges
- The is because sometimes they do lose their "d" orbital electrons
- You will not be expected to determine what charged ion a transition metal would produce
- We will run into transition metals with more than one ion
- Ex. Cu⁺² Cu⁺³

A positive ion is also called a...

- 1. Cathode
- 2. Cation
- 3. Kation
- 4. None of the above

Which of the following will form a cation?

- 1. Oxygen
- 2. Calcium
- 3. Copper
- 4. Bromine
- 5. More than one of the above
- 6. All of the above
- 7. None of the above

Negative Ion Formation

- An _____ is a negatively charged ion.
 - An easy way to remember this one is that it is the opposite of a cation. ⁽²⁾
- The figure shown here illustrates chlorine gaining an electron to become a chlorine ion.

Negative Ion Formation

• Chlorine ATOM	Chlorine ION
1s ² 2s ² 2p ⁶ 3s ² 3p ⁵	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
	So
	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ with a
	"-1" charge
	There is one more electron than there is protons
Draw example on board	

Practice

- Write the electron config for ...
 - Na Ion
 - O ion
 - Ca ion

Quick ?'s

- How many protons in a Cl atom? Electrons?
- How many protons in a Cl ion? Electrons?
- How did you figure this out??

How many protons in an S ion?

1. Numeric

How many valence electrons in an S <u>atom</u>?

1. Numeric

Negative Ion Formation

- Nonmetal ions gain the number of electrons required to fill an octet.
- Some nonmetals can gain or lose electrons to complete an octet.

Table 7.3	Group 15-17 lons				
Group	Configuration Charge of Ion Formed				
15	[noble gas] ns ² np ³	3- when three electrons are gained			
16	[noble gas] ns ² np ⁴ 2- when two electrons are gai				
17	[noble gas] ns ² np ⁵	[noble gas] ns ² np ⁵ 1– when one electron is gained			

A cation is...

- 1. Negatively charged
- 2. Positively charged
- 3. Neutral
- 4. None of the above

Which of the following would produce a negatively charged ion?

- 1. Ca
- 2. S
- 3. Cs
- 4. All of the above
- 5. None of the above

Formation of Ionic Cmpds

- - Attractive forces exist between oppositely charged ions within the lattice.
 Repulsive forces exist between like-charged ions
 - Repulsive forces exist between like-charged ions within the lattice.
- The combined attractive and repulsive forces within a crystal lattice determine:

_

NaCl and CsCl Crystal Lattices

Sodium ion, Na+ Chloride ion, Cl

Cesium ion, Cs+ Chloride ion, Cl-

Lattice NRG

- The ______ required to separate ______ of ions in an ______ compound is referred to as the lattice NRG.
- Lattice energy is _____ related to the size of the ions that are bonded.
- ______ ions form compounds with more closely spaced ionic charges, and require ______ energy to separate.
- Electrostatic force of attraction is _____ related to the distance between the opposite charges.
- The _____ the ion, the _____ the attraction

Energy and the Ionic Bond

• The value of lattice energy is also affected by the charge of the ion.

Which compound has the strongest bonds?

Table 7.6	Lattice Energies of Some I Compounds				
Compound	Lattice Energy (kJ/mol)	Compound	Lattice Energy (kJ/mol)		
KI	632	KF	808		
KBr	671	AgCl	910		
RbF	774	NaF	910		
Nal	682	LiF	1030		
NaBr	732	SrCl ₂	2142		
NaCl	769	MgO	3795		

Ionic vs Covalent Bonds/Cmpds

- The force that holds ions together in an ionic compound is a ______ electrostatic attraction.
- In contrast, the forces of attraction ______ molecules of a covalent compound are much weaker.
- This difference in the strength of attraction between the basic units of molecular and ionic compounds gives rise to different properties between the two types of compounds.

Ionic vs Covalent Bonds/Cmpds

- Molecular (covalent) cmps
 - 1. _____
 - 2. _____
- Ionic cmpds
 - 1. _____

Comparing Melting and Boiling pts

Compound name	Formula	Type of compound	Melting point °C K	Boiling point °C K
Magnesium fluoride	MgF_2	ionic	1261 1534	2239 2512
Sodium chloride	NaCl	ionic	801 1074	1413 1686
Calcium iodide	CaI ₂	ionic	784 1057	1100 1373
Iodine monochloride	ICI	covalent	27 300	97 370
Carbon tetrachloride	CCl ₄	covalent	-23 250	77 350
Hydrogen fluoride	HF	covalent	-83 190	20 293
Hydrogen sulfide	H_2S	covalent	-86 187	-61 212
Methane	CH_4	covalent	-182 91	-164 109

How to identify the cmpd as ionic or covalent

- In a laboratory your may...
 - Lq or gas = ____
 - If solid...
 - Tap gently and if it breaks, it should not turn into a powder (it should fracture)
 - Heat it up (Ionic have _____ melting points) and if it melts Check for conductivity (_____ conduct electricity)
 - ______ in water and check for conductivity
 ______ conduct electricity

Polyatomic Ions

• _____ are covalently bonded atoms that have a charge

- Ex.
 - NH4⁺¹ is ammonium
 - The +1 is the charge for the entire molecule
 - There are a lot of polyatomic ions
 - See "Polyatomic Ions Sheet"

Assignment

• 6.3 Wkst

6.4

Metallic Bonding

Objectives

- **Describe** the electron-sea model of metallic bonding, and explain why metals are good electrical conductors.
- Explain why metal surfaces are shiny.
- Explain why metals are malleable and ductile but ionic-crystalline compound are not.

Metallic Bonding

- Chemical bonding in metals is different than in ionic, molecular, or covalent-network cmpds
- They have very unique properties:
 - 1. _____
 - 2. _____
 - 3. _____
 - 4. _____ 5. _____

Comparisons

Metallic Bond

- Within the crowded lattice, the outer energy levels of metal atoms overlap.
- The _ ___ proposes that all metal atoms in a metallic solid contribute their valence electrons to form a "sea" of electrons.
- The electrons are free to move around and are referred to as _____, forming a metallic ______. – They don't "______" to any one atom

Metallic Bond

• The chemical bonding that results from the attraction between _____ atoms and the surrounding ______ of electrons is called _____ **bonding.**

Enthalpy of Vaporization

• Enthalpy of Vaporization is the amount of NRG absorbed as heat when a specified amount of substance vaporizes at a constant pressure.

Assignment

• 6.4 Wkst

6.5

Molecular Geometry

Objectives

- Explain VSEPR theory.
- **Predict** the shapes of molecules or polyatomic ions using VSEPR theory.
- **Explain** how the shapes of molecules are accounted for by hybridization theory.

Objectives (cont.)

- Describe dipole-dipole forces, hydrogen bonding, induced dipoles, and London dispersion forces and their effects on properties such as boiling and melting points.
- Explain the shapes of molecules or polyatomic ions using VSEPR theory.

Molecular Geometry

- The properties of molecules depend not only on the bonding of atoms but also on _______: the three-dimensional arrangement of a molecule's atoms.
- The polarity of each bond, along with the geometry of the molecule, determines ______, or the uneven distribution of molecular shape.
- Molecular polarity strongly influences the forces that act ______ molecules in liquids and solids.

VSEPR

- Valence Shell Electron Pair Repulsion (VSEPR)
- Electron pairs ______ each other and cause molecules to be in ______ positions relative to each other.
- ______ electron pairs also determine the ______ of a molecule.
- Electron pairs are located in a molecule as ______ as they can be.

VSEPR

- Bond Angles
- Think of tying balloons together.
 - The point where they are connected represents the central atom
 - The balloons represent electron-dense regions
- What is it going to look like when you tie 2 balloons together?
- 3 balloons, 4 balloons...

VSEPR

- When Drawing them...
 - All bonds are represented with a single line
 Single, Double, and triple bonds = 1 line
- Go Over Drawing Lewis Structure HO
- Practice
 - CBr₄
 - BCl₃
 - $-H_2O$ -ONF

VSEPR and Molecular Geometry

	Molecular shape	Atoms bonded to central atom	Lone pairs of electrons	Formula example	Lewis structure
Linear	— —	2	0	BeF_2	:F-Be-F:
Bent	\triangle	2	1	$SnCl_2$:či či
Trigonal- planar	\bigtriangleup	3	0	BF_3	·Ë F:
Tetrahedral	\bigtriangleup	4	0	CH_4	$\stackrel{\rm H}{\stackrel{\rm H}{\underset{\rm H}{\stackrel{\rm -}}}_{\rm H}}_{\rm H}$

VSEPR and Molecular Geometry

	Molecular shape	Atoms bonded to central atom	Lone pairs of electrons	Formula example	Lewis structure
Trigonal- pyramidal	\bigtriangleup	3	1	NH_3	, Н Н Н Н
Bent	Ä	2	2	H_2O	H H

VSEPR and Molecular Geometry

- What are their molecular shapes? (Name and draw)
 - $-\operatorname{CBr}_4$
 - $-BCl_3$
 - $-H_2O$
 - ONF
 - $-CO_2$

Hybridization

- For this purpose, we use the model of ______, which is the mixing of two or more atomic orbitals of similar NRG on the same atom to produce new hybrid atomic orbitals of equal NRG
- Hybrid orbitals are orbitals of ______ produced by the combination of two or more orbitals on the same atom.
- Hybridization explains the _____ and _____ of many molecules.

Intermolecular Forces

- Intermolecular forces are the attraction forces between
 - Boiling points are a good measure of these forces
 Higher BP, ______ intermolecular forces
 - These forces tend to be weaker than bonds within a molecule or formula unit

•_____

??

- Which has stronger I Forces? Ionic Bonds or Covalent Bonds?
- Explain

Type of substance	Common use	State at room temperature	Melting point (°C)	Boiling point (°C)
Ionic substances				
Potassium chloride, KCl	salt substitute	solid	770	sublimes at 1500
Sodium chloride, NaCl	table salt	solid	801	1413
Calcium fluoride, CaF2	water fluoridation	solid	1423	2500
Covalent substances				
Methane, CH4	natural gas	gas	-182	-164
Ethyl acetate, CH3COOCH2CH3	fingernail polish	liquid	-84	77
Water, H2O	(many)	liquid	0	100
Heptadecane, C ₁₇ H ₃₆	wax candles	solid	22	302

Polar Bonds

- · These are the strongest intermolecular forces
- They have an _____ charge distribution
 - This leads to dipoles

 ______ is made when an electrons spend more time around one atom than another

ElectronegativityCl = 3.16ElectronegativityH = 2.20Difference = 0.96

Polar

 A dipole is represented by an arrow with its head pointing toward the negative pole and a crossed tail at the positive pole. The dipole created by a hydrogen chloride molecule is indicated as follows:

H-CI

Dipole - Dipole

- The ______ attraction is very similar to an ionic attraction
- The oppositely charge ends of a
 _____ covalent molecule are
 attracted to each other
- The ______ the polar difference, the ______ the attraction

Dipole-Dipole

- Dipole-Dipole bonds form when the dipole from one molecules is attracted
- Page 195 Fig. 5.9

Polar Covalent Bonds

- Covalently bonded molecules are either
- by an electric field.
- _____ molecules align with an electric field.

Polar Covalent Bonds

- Compare water and CCl₄.
- Both bonds are polar, but only water is a polar molecule because of the shape of the molecule.
- Quick Demo water and balloon

Polar Covalent Bonds

 The electric charge on a CCl₄ molecule measured at any distance from the center of the molecule is identical to the charge measured at the same distance on the opposite side.

H Bonds

- Some hydrogen-containing compounds have unusually high boiling points. This is explained by a particularly strong type of dipole-dipole force.
- In compounds containing H–F, H–O, or H–N bonds, the large electronegativity differences between hydrogen atoms and the atoms they are bonded to make their bonds highly polar.

H Bonds

- The small size of the hydrogen atom allows the atom to come very close to an unshared pair of electrons in an adjacent molecule.
- The intermolecular force in which a hydrogen atom that is bonded to a highly electronegative atom is attracted to an unshared pair of electrons of an electronegative atom in a nearby molecule is known as ______

H Bonds

- Hydrogen bonds are usually represented by dotted lines connecting the hydrogen-bonded hydrogen to the unshared electron pair of the electronegative atom to which it is attracted.
- An excellent example of hydrogen bonding is that which occurs between water molecules. The strong hydrogen bonding between water molecules accounts for many of water's characteristic properties

H Bonds

London Dispersion Forces

- In all atoms and molecules the electrons are moving
- This can result in the electron distribution being ______ at any moment in time – This can produce a ______ dipole
- This temporary dipole can induce a dipoledipole attraction called ______
- Page 197 Fig. 5.13

Assignment

• 6.5 Wkst