\qquad Class: \qquad Date: \qquad

Skills Worksheet

Sample Problem Set

Teacher Notes and Answers

LIMITING REACTANTS

1. $2 \mathrm{ZnS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}+2 \mathrm{SO}_{2} ; \mathrm{ZnS}$ is limiting
2. a. Al is limiting
b. $4.25 \times 10^{-3} \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$
c. O_{2} is limiting
3. a. CuS is limiting
b. 15.6 g CuO
4. Fe is limiting; 0.158 mol Cu
5. $54 \mathrm{~g} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
6. a. $38 \mathrm{~g} \mathrm{Br}_{2}$
b. $510 \mathrm{~g} \mathrm{I}_{2}$
7. a. Ni is in excess
b. $60.2 \mathrm{~g} \mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$
8. $\mathrm{CS}_{2}(g)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{SO}_{4}(g)+\mathrm{CO}_{2}(g)$
$0.80 \mathrm{~mol} \mathrm{O}_{2}$ remain
9. a. $0.84 \mathrm{~g} \mathrm{Hg}\left(\mathrm{NH}_{2}\right) \mathrm{Cl}$
b. 0.84 g
10. a. $2 \mathrm{Al}(s)+2 \mathrm{NaOH}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)$
$\rightarrow 2 \mathrm{NaAlO}_{2}(a q)+3 \mathrm{H}_{2}(g)$
b. NaOH is limiting; $0.56 \mathrm{~mol} \mathrm{H}_{2}$
c. Al should be limiting because you would not want aluminum metal remaining in the drain.
11. a. $0.0422 \mathrm{~mol} \mathrm{Cu} ; 0.169 \mathrm{~mol} \mathrm{HNO}_{3}$
b. Cu is in excess
c. $3.32 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
12. a. 2.90 mol NO ; $4.35 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
b. NH_{3} is limiting
c. NH_{3} is limiting; $1.53 \times 10^{3} \mathrm{~kg} \mathrm{NO}$
13. $565 \mathrm{~g} \mathrm{CH}_{3} \mathrm{CHO}$;
$29 \mathrm{~g} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ remains
14. 630 g HBr
15. $12.7 \mathrm{~g} \mathrm{SO}_{2}$
16. a. 18.4 g Tb
b. $2.4 \mathrm{~g} \mathrm{TbF}_{3}$
\qquad Date: \qquad

Sample Problem Set

Limiting Reactants

At the beginning of Chapter 8, a comparison was made between solving stoichiometry problems and making turkey sandwiches. Look at the sandwich recipe once more:

2 bread slices +2 turkey slices +1 lettuce leaf +1 cheese slice \rightarrow 1 turkey-and-cheese sandwich

If you have 24 slices of turkey, you can make 12 sandwiches at 2 slices per sandwich if you have enough of all the other ingredients. If, however, you have only 16 slices of bread, you can make only 8 sandwiches, even though you may an ample supply of the other ingredients. The bread is the limiting ingredient that prevents you from making more than 8 sandwiches.

The same idea applies to chemical reactions. Look at a reaction used to generate hydrogen gas in the laboratory:

$$
\mathrm{Zn}(s)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{ZnSO}_{4}(a q)+\mathrm{H}_{2}(g)
$$

The balanced equation tells you that 1 mol Zn reacts with $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$ to produce $1 \mathrm{~mol} \mathrm{ZnSO}_{2}$ and $1 \mathrm{~mol} \mathrm{H}_{2}$. Suppose you have 1 mol Zn and $5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$. What will happen, and what will you get? Only 1 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will react and only 1 mol of each of the products will be produced because only 1 mol Zn is available to react. In this situation, zinc is the limiting reactant. When it is used up the reaction stops even though more $\mathrm{H}_{2} \mathrm{SO}_{4}$ is available.

It is difficult to directly observe molar amounts of reactants as they are used up. It is much easier to determine when a certain mass of a reactant has been completely used. Use molar masses to restate the equation in terms of mass, as follows:
$65.39 \mathrm{~g} \mathrm{Zn}+98.09 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 161.46 \mathrm{~g} \mathrm{ZnSO}_{4}+2.02 \mathrm{~g} \mathrm{H}_{2}$
This version of the equation tells you that zinc and sulfuric acid will always react in a mass ratio of 65.39 g of $\mathrm{Zn}: 98.09 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ or 0.667 g of $\mathrm{Zn}: 1.000 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$. If you have 65.39 g of Zn but only 87.55 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$, you will not be able to make 2.02 g of hydrogen. Sulfuric acid will be the limiting reactant, preventing the zinc from reacting completely. Suppose you place 20 g of zinc and 100 g of sulfuric acid into a flask. Which would be used up first? In other words, is the limiting reactant zinc or sulfuric acid? How much of each product will be produced? The sample problems in this chapter will show you how to answer these questions.

Name: \qquad Class: \qquad Date: \qquad
Sample Problem Set continued
Genaral Plan for Solving Limiting Reactant Problems

\qquad Class: \qquad Date: \qquad

Sample Problem 1

Calcium hydroxide, used to neutralize acid spills, reacts with hydrochloric acid according to the following equation:

$$
\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

If you have spilled 6.3 mol of HCl and put 2.8 mol of $\mathrm{Ca}(\mathrm{OH})_{2}$ on it, which substance is the limiting reactant?

Solution

ANALYZE

What is given in the problem?
the balanced equation, the amounts of $\mathrm{Ca}(\mathrm{OH})_{2}$ and HCl in moles
What are you asked to find? the limiting reactant

Items	Data	
Reactant	$\mathrm{Ca}(\mathrm{OH})_{2}$	HCl
Coefficient in balanced equation	1	2
Molar mass	NA^{*}	NA
Amount of reactant	2.8 mol	6.3 mol
Mass of reactant	NA	NA
Limiting reactant	$?$	$?$

*not applicable to the problem

PLAN

What steps are needed to determine the limiting reactant?
Choose one of the reactants. Use the mole ratio between the two reactants to compute the amount of the other reactant that would be needed to react with it. Compare that amount with the amount available.

2A

Amount of $\mathrm{Ca}(\mathrm{OH})_{2}$ in mol

3

Amount of HCl needed to react with $\mathrm{Ca}(\mathrm{OH})_{2}$
Choose one of the reactants, for instance, $\mathrm{Ca}(\mathrm{OH})_{2}$

Name: \qquad Class: \qquad Date: \qquad
Sample Problem Set continued

> mole ratio
> $\mathrm{mol} \stackrel{\text { given }}{\mathrm{Ca}(\mathrm{OH})_{2}} \times \frac{2 \text { mol } \mathrm{mCl}}{\text { mole ratio }} 1 \mathrm{~mol} \mathrm{Ca(OH)}_{2}=\mathrm{mol} \mathrm{HCl}$ needed

COMPUTE

$$
2.8 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}=5.6 \mathrm{~mol} \mathrm{HCl} \text { needed }
$$

The computation shows that more $\mathrm{HCl}(6.3 \mathrm{~mol})$ is available than is needed (5.6 $\mathrm{mol})$ to react with the $2.8 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$ available. Therefore, HCl is present in excess, making $\mathrm{Ca}(\mathrm{OH})_{2}$ the limiting reactant.

EVALUATE

Is the answer reasonable?
Yes; you can see that 6.3 mol HCl is more than is needed to react with $2.8 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$.

Practice

1. Aluminum oxidizes according to the following equation:

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

Powdered $\mathrm{Al}(0.048 \mathrm{~mol})$ is placed into a container containing $0.030 \mathrm{~mol} \mathrm{O}_{2}$. What is the limiting reactant? ans: $\mathbf{O}_{\mathbf{2}}$
\qquad Class: \qquad Date: \qquad

Sample Problem 2

Chlorine can replace bromine in bromide compounds forming a chloride compound and elemental bromine. The following equation is an example of this reaction.

$$
2 \mathrm{KBr}(a q)+\mathrm{Cl}_{2}(a q) \rightarrow 2 \mathrm{KCl}(a q)+\mathrm{Br}_{2}(l)
$$

When 0.855 g of Cl_{2} and 3.205 g of KBr are mixed in solution, which is the limiting reactant? How many grams of Br_{2} are formed?

Solution

ANALYZE

What is given in the problem? the balanced equation, and the masses of Cl 2 and KBr available
What are you asked to find? which reactant is limiting, and the mass of Br2 produced

Items	Data		
Substance	KBr	Cl_{2}	Br_{2}
Coefficient in balanced equation	2	1	1
Molar mass*	$119.00 \mathrm{~g} / \mathrm{mol}$	$70.90 \mathrm{~g} / \mathrm{mol}$	$159.80 \mathrm{~g} / \mathrm{mol}$
Amount of substance	$? \mathrm{~mol}$	$? \mathrm{~mol}$	$? \mathrm{~mol}$
Mass of substance	3.205 g	0.855 g	$? \mathrm{~g}$
Limiting reactant	$?$	$?$	NA

*determined from the periodic table

PLAN

What steps are needed to determine the limiting reactant?
Convert mass of each reactant to amount in moles. Choose one of the reactants. Compute the amount of the other reactant needed. Compare that with the amount available.

What steps are needed to determine the mass of Br_{2} produced in the reaction? Use amount of the limiting reactant and the mole ratio given in the equation to determine the amount of $\mathbf{B r}_{2}$. Convert the amount of $\mathbf{B r}_{2}$ to the mass of $\mathbf{B r} r_{2}$ using the molar mass.
\qquad Class: \qquad Date: \qquad
Sample Problem Set continued

1a
Mass of KBr in g

2a
Amount of KBr in mol

1b
Mass of Cl_{2} in g
multiply by the inverse molar mass of Cl_{2}

2b
Amount of Cl_{2} in mol
compare moles of reactant needed with moles of reactant available
by mole ratio: $\frac{\mathrm{Br}_{2}}{\text { limiting reactant }}$

6

 5Mass of Br_{2} in $\mathrm{g} \underset{\text { multiply by the molar mass of }}{\stackrel{\text { mount }}{ } \mathrm{Br}_{2} \text { in mol }}$ $B r_{2}$

$$
\underset{\underset{\mathrm{g} \mathrm{KBr}}{\text { given }} \times \frac{\frac{1}{\text { molar mass KBr }}}{119.00 \mathrm{~g} \mathrm{KBr}}}{\underset{\mathrm{~g} \mathrm{Cl}_{2}}{\text { given }} \times \frac{\frac{1}{\text { molar mass Cl }}}{1 \mathrm{~mol} \mathrm{Cl}_{2}}}=\mathrm{mol} \mathrm{KBr}
$$

Choose one of the reactants, KBr for instance.

$$
\stackrel{\text { calculated above }}{\operatorname{mol~} \mathrm{KBr} \times \frac{1}{\mathrm{molele}^{\text {molCl }}{ }_{2}}} 1 \mathrm{~mol} \mathrm{KBr}_{2} \text { needed }
$$

Determine the limiting reactant.

$$
\text { mol limiting reactant } \times \frac{\begin{array}{c}
\text { calculated above ratio } \\
\text { mol } \mathrm{Br}_{2}
\end{array}}{\text { mol limiting reactant }} \times \frac{\begin{array}{c}
\text { molar mass } \mathrm{Br} r_{2} \\
159.80 \mathrm{~g} \mathrm{Br}
\end{array}}{1 \mathrm{~mol} \mathrm{Br}_{2}}=\mathrm{g} \mathrm{Br}_{2}
$$

COMPUTE

$3.205 \mathrm{~g} \mathrm{KBr} \times \frac{1 \mathrm{~mol} \mathrm{KBr}}{119.00 \mathrm{~g} \mathrm{KBr}}=0.02693 \mathrm{~mol} \mathrm{KBr}$
$0.855 \mathrm{~g} \mathrm{Cl}_{2} \times \frac{1 \mathrm{molCl}_{2}}{70.90 \mathrm{~g} \mathrm{Cl}_{2}}=0.0121 \mathrm{~mol} \mathrm{Cl} 2$
Choose one of the reactants, KBr , for instance.

$$
0.02693 \mathrm{~mol} \mathrm{KBr} \times \frac{1 \mathrm{~mol} \mathrm{Cl}_{2}}{2 \mathrm{~mol} \mathrm{KBr}}=0.01346 \mathrm{~mol} \mathrm{Cl}_{2} \text { needed }
$$

\qquad Class: \qquad Date: \qquad

Only $0.0121 \mathrm{~mol} \mathrm{Cl}_{2}$ is available. For all of the KBr to react, $0.0136 \mathrm{~mol} \mathrm{Cl}_{2}$ is needed. Therefore, Cl_{2} is the limiting reactant.

$$
0.0121 \mathrm{~mol} \mathrm{Cl} 2 \times \frac{1 \mathrm{~mol} \mathrm{Br}_{2}}{1 \mathrm{~mol} \mathrm{Cl}_{2}} \times \frac{159.80 \mathrm{~g} \mathrm{Br}_{2}}{1 \mathrm{~mol} \mathrm{Br}_{2}}=1.93 \mathrm{~g} \mathrm{Br}_{2}
$$

EVALUATE

Is the determination of limiting reactant reasonable?
Yes; the mass of $2 \mathbf{~ m o l ~ K B r}$ is 238 g and the mass of $1 \mathrm{~mol} \mathrm{Cl}_{\mathbf{2}}$ is about 71 g , so they react in roughly a 3:1 ratio by mass. 3.2 g KBr would require about $1 \mathrm{~g} \mathrm{of} \mathrm{Cl}_{2}$, but only 0.855 g is available.
Are the units and significant figures of the mass of Br_{2} correct?
The number of significant figures is correct because the mass of $\mathbf{C l}_{\mathbf{2}}$ was given to three significant figures. Units cancel to give grams of $\mathbf{B r}_{2}$.

Practice

1. A process by which zirconium metal can be produced from the mineral zirconium(IV) orthosilicate, ZrSiO_{4}, starts by reacting it with chlorine gas to form zirconium(IV) chloride.

$$
\mathrm{ZrSiO}_{4}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{ZrCl}_{4}+\mathrm{SiO}_{2}+\mathrm{O}_{2}
$$

What mass of ZrCl_{4} can be produced if 862 g of ZrSiO_{4} and 950 . g of Cl_{2} are available? You must first determine the limiting reactant.
ans: $\mathbf{Z r S i O}_{\mathbf{4}}, \mathbf{1 . 1 0 \times 1 0} \mathbf{~} \mathbf{g ~ Z r C l}_{\mathbf{4}}$
\qquad Class: \qquad Date: \qquad

Additional Problems

1. Heating zinc sulfide in the presence of oxygen yields the following:

$$
\mathrm{ZnS}+\mathrm{O}_{2} \rightarrow \mathrm{ZnO}+\mathrm{SO}_{2}
$$

If 1.72 mol of ZnS is heated in the presence of 3.04 mol of O_{2}, which reactant will be used up? Balance the equation first.
2. Use the following equation for the oxidation of aluminum in the following problems.

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

a. Which reactant is limiting if 0.32 mol Al and $0.26 \mathrm{~mol} \mathrm{O}_{2}$ are available?
b. How many moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$ are formed from the reaction of $6.38 \times 10^{-3} \mathrm{~mol}$ of O_{2} and $9.15 \times 10^{-3} \mathrm{~mol}$ of Al ?
c. If 3.17 g of Al and 2.55 g of O_{2} are available, which reactant is limiting?
3. In the production of copper from ore containing copper(II) sulfide, the ore is first roasted to change it to the oxide according to the following equation:

$$
2 \mathrm{CuS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CuO}+2 \mathrm{SO}_{2}
$$

a. If 100 g of CuS and 56 g of O_{2} are available, which reactant is limiting?
b. What mass of CuO can be formed from the reaction of 18.7 g of CuS and 12.0 g of O_{2} ?
4. A reaction such as the one shown here is often used to demonstrate a single replacement reaction.

$$
3 \mathrm{CuSO}_{4}(a q)+2 \mathrm{Fe}(s) \rightarrow 3 \mathrm{Cu}(s)+\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q)
$$

If you place 0.092 mol of iron filings in a solution containing 0.158 mol of CuSO_{4}, what is the limiting reactant? How many moles of Cu will be formed?
5. In the reaction $\mathrm{BaCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$, what mass of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ can be formed by combining $55 \mathrm{~g} \mathrm{BaCO}_{3}$ and $26 \mathrm{~g} \mathrm{HNO}_{3}$?
6. Bromine displaces iodine in magnesium iodide by the following process:

$$
\mathrm{MgI}_{2}+\mathrm{Br}_{2} \rightarrow \mathrm{MgBr}_{2}+\mathrm{I}_{2}
$$

a. Which is the excess reactant when 560 g of MgI_{2} and 360 g of Br_{2} react, and what mass remains?
b. What mass of I_{2} is formed in the same process?
7. Nickel displaces silver from silver nitrate in solution according to the following equation:

$$
2 \mathrm{AgNO}_{3}+\mathrm{Ni} \rightarrow 2 \mathrm{Ag}+\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}
$$

a. If you have 22.9 g of Ni and 112 g of AgNO_{3}, which reactant is in excess?
b. What mass of nickel(II) nitrate would be produced given the quantities above?
\qquad Class: \qquad Date: \qquad
Sample Problem Set continued
8. Carbon disulfide, CS_{2}, is an important industrial substance. Its fumes can burn explosively in air to form sulfur dioxide and carbon dioxide.

$$
\mathrm{CS}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{2}(g)+\mathrm{CO}_{2}(g)
$$

If 1.60 mol of CS_{2} burns with 5.60 mol of O_{2}, how many moles of the excess reactant will still be present when the reaction is over?
9. Although poisonous, mercury compounds were once used to kill bacteria in wounds and on the skin. One was called "ammoniated mercury" and is made from mercury(II) chloride according to the following equation:

$$
\mathrm{HgCl}_{2}(a q)+2 \mathrm{NH}_{3}(a q) \rightarrow \mathrm{Hg}\left(\mathrm{NH}_{2}\right) \mathrm{Cl}(s)+\mathrm{NH}_{4} \mathrm{Cl}(a q)
$$

a. What mass of $\mathrm{Hg}\left(\mathrm{NH}_{2}\right) \mathrm{Cl}$ could be produced from 0.91 g of HgCl_{2} assuming plenty of ammonia is available?
b. What mass of $\mathrm{Hg}\left(\mathrm{NH}_{2}\right) \mathrm{Cl}$ could be produced from 0.91 g of HgCl_{2} and 0.15 g of NH_{3} in solution?
10. Aluminum chips are sometimes added to sodium hydroxide-based drain cleaners because they react to generate hydrogen gas which bubbles and helps loosen material in the drain. The equation follows.

$$
\mathrm{Al}(s)+\mathrm{NaOH}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{NaAlO}_{2}(a q)+\mathrm{H}_{2}(g)
$$

a. Balance the equation.
b. How many moles of H_{2} can be generated from 0.57 mol Al and 0.37 mol NaOH in excess water?
c. Which reactant should be limiting in order for the mixture to be most effective as a drain cleaner? Explain your choice.
11. Copper is changed to copper(II) ions by nitric acid according to the following equation:

$$
4 \mathrm{HNO}_{3}+\mathrm{Cu} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

a. How many moles each of HNO_{3} and Cu must react in order to produce 0.0845 mol of NO_{2} ?
b. If 5.94 g of Cu and 23.23 g of HNO_{3} are combined, which reactant is in excess?
12. One industrial process for producing nitric acid begins with the following reaction:

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}
$$

a. If $2.90 \mathrm{~mol} \mathrm{NH}_{3}$ and $3.75 \mathrm{~mol} \mathrm{O}_{2}$ are available, how many moles of each product are formed?
b. Which reactant is limiting if $4.20 \times 10^{4} \mathrm{~g}$ of NH_{3} and $1.31 \times 10^{5}{\mathrm{~g} \text { of } \mathrm{O}_{2} \text { are }}^{\text {are }}$ available?
c. What mass of NO is formed in the reaction of 869 kg of NH_{3} and $2480 \mathrm{~kg} \mathrm{O}_{2}$?
\qquad Class: \qquad Date: \qquad
Sample Problem Set continued
13. Acetaldehyde $\mathrm{CH}_{3} \mathrm{CHO}$ is manufactured by the reaction of ethanol with copper(II) oxide according to the following equation:

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CuO} \rightarrow \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cu}
$$

What mass of acetaldehyde can be produced by the reaction between 620 g of ethanol and 1020 g of CuO ? What mass of which reactant will be left over?
14. Hydrogen bromide can be produced by a reaction among bromine, sulfur dioxide, and water as follows.

$$
\mathrm{SO}_{2}+\mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HBr}+\mathrm{H}_{2} \mathrm{SO}_{4}
$$

If 250 g of SO_{2} and 650 g of Br_{2} react in the presence of excess water, what mass of HBr will be formed?
15. Sulfur dioxide can be produced in the laboratory by the reaction of hydrochloric acid and a sulfite salt such as sodium sulfite.

$$
\mathrm{Na}_{2} \mathrm{SO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

What mass of SO_{2} can be made from 25.0 g of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and 22.0 g of HCl ?
16. The rare-earth metal terbium is produced from terbium(III) fluoride and calcium metal by the following displacement reaction:

$$
2 \mathrm{TbF}_{3}+3 \mathrm{Ca} \rightarrow 3 \mathrm{CaF}_{2}+2 \mathrm{~Tb}
$$

a. Given 27.5 g of TbF_{3} and 6.96 g of Ca , how many grams of terbium could be produced?
b. How many grams of the excess reactant are left over?

